ANTLR
Cheatsheets

A Handy Reference
to make your life easier

STRUMENTA

PAGE

— O]

Cheatsheets

This document contains
cheatsheets for:

- Grammar

- Lexer

- Parser

- Actions and Clauses

Note that some cheatsheets
contain a reference to the
complete list of possible values for
a specific element. For instance,
INn the lexer cheatsheet you can
find the correct format for a lexer
command, but the list of valid
commandsistoolongtobe placed
INn the cheatsheet so it is placed
after the cheatsheet itself.

ANTLR Cheatsheets

Grammar Cheatsheet

PAGE

— 02

grammar Sum

The name of a grammar must be the same as
the name of the file

lexer grammar Sum

A separate lexer grammar can be declared

parser grammar Sum

A separate parser grammar can be declared

import Sum

Other grammars can be imported

tokens { ONE }

Define tokens not associated to a rule

options {name=value;}

Set the value of an option (see Grammar
Options for a list of valid options)

channels { ONE }

Create a new channel. Available only in lexer
grammars

@header{ code}

Add the code to the header section of the
grammar. In combined grammars it adds the
code to both the lexer and the parser

@members{ code }

Add the code to the members section of the
grammar. In combined grammars it adds the
code to both the lexer and the parser

@lexer::header{ code }

Add the code to the header section of the lexer

@lexer:members{ code }

Add the code to the members section of the
lexer

@parser:header{ code }

Add the code to the header section of the
parser

@parser:members{ code }

Add the code to the members section of the
parser

// Comment

A single line comment

/¥ Comment ¥

A Multi-line comment

'literal' String and character literals
"literal" Double quotes cannot be used as delimiters
\uOOOT" A literal character referenced by its own
unicode code point (up to U+FFFF)
, , A literal character referenced by its own
\u{IFO00} unicode code point (up to U+10FFFF)
I\nl
\\kr) Escape sequences supported in string literals
\t! or characters sets
|\f|

ANTLR Cheatsheets

=03

There are two ways to input options relative to a grammar:

Grammar Options

1. Using the -Dname command argument format
2. Putting them inside the options section of the grammar itself.

There is no difference in the results, but usually you prefer to use the second
way, apart when setting the option language. That is because usually, when
you set any of the other options, the grammar is fully dependent on some
external code. In this case you want everybody that reads the grammar
to know that. Instead you might use the option language on a language
independent grammar.

The options are:

* language
* superClass
* TokenlLabelType

* tokenVocab

language

options {language=CSharp;}

antlr4 -Dlanguage=CSharp Sum.g4

Ifthe language is supported it generates the components (e.g., lexer, parser,
etc.) in the specified target language. Remember to get the case of the
language right.

The supported languages are:

Language Option
Java Java

CH# CSharp
Python 2 Python2
Python 3 Python3
JavaScript JavaScript
Go Go

C++ Cpp
Swift Swift
PHP PHP
Dart Dart

ANTLR Cheatsheets

PAGE

|
superClass

options {superClass=SumSuper;}

Set the base class of the generated lexer (if used in lexer grammars) or
parser (if used in parser grammars or combined grammars).

antlr4 -DsuperClass=SumSuper Sum.g4

When set on the command line, the option sets the base class for both the
lexer and the parser.

When properly set, the declaration of the generated lexer, with the Python
3 target, should look like the following.

class SumLexer(SumSuper):

When properly set, the declaration of the generated parser lexer, with the
Python 3 target, should look like the following.

class SumParser(SumSuper):

Usually it makes most sense to use two different base classes for the lexer
and the parser. Each of the two should inherit from the respective base
class for the component.

// super class for the lexer

class SumSuperlLexer(Lexer):

/] super class for the parser

class SumSuperParser(Parser):

TokenLabelType

options {TokenlLabelType=SumToken;}

This option starts with an uppercase letter. ANTLR by default generates
tokens with the Token class. It also adds fields of the proper class Token in
the Context objects used in the parser, listener and visitor. You can change
that by using this option.

You also need to create a custom TokenFactory class and set it to be used
by the token stream used by the parser.

// custom token factory, which will also generate SumToken(s)

class CustomTokenFactory(TokenFactory):

// then, when setting up the token stream

tokens = CommonTokenStream(lexer)

tokens.tokenSource._factory = CustomTokenFactory()

ANTLR Cheatsheets

PAGE

— 05

For some target languages you might also need to add an import to the
generated parser.

// inside the grammar

@parser:header {

from SumToken import SumToken

}

That is because they use it for the type of the End of File token.

// inside the generated SumParser
EOF = SumToken.EOF

tokenVocab

options {tokenVocab=SumLlLexerGrammar;}

By default, ANTLR assigns a number automatically to each token it
encounters in the grammar. However, it cannot do that automatically in
a parser grammar. In that case you need to use the tokens defined in a
separate lexer grammar.

Basically, what this option does is reading the .tokens file corresponding to
the lexer grammar.

ANTLR Cheatsheets

Lexer Cheatsheet

PAGE

— 006

Matches

rule:
TOKEN Another token with name TOKEN. Recursion
is allowed, but not left recursion
‘literal’ String ‘literal’
Any character
~'a’ Any character but the one in the set
Any character in the characters set. Inside
[a-Z] characters set], \, and - must be escaped
with \
Any character matching the property. Only
\p{Property}] usable inside character sets (see Unicode

Properties for a list of valid properties)

\p{Property=value}]

Any character having property with the
indicated value. Only usable inside character
sets (see Unicode Properties for a list of valid

properties)
a7 Any character in the range
(A'| B) The token A or the token B
(A B)? Nothing or the token A or the token B
(A | B)* Nothing or any number of token a or the
token b
(A| B)+ At least one time the token a or the token b
(A|B)?? C Nothing or the token A or the token B, the
o fewer that still allows to then match C
Nothing or any number of token a or the
(A B)*? C token B, the fewer that still allows to then
match C
At least one time the token A or the token B,
(A B)+? C but the fewer that still allows to then match
token C
Format Element
PLUS : ‘+" The name of a lexer rule must start with an
C uppercase letter
. Execute the action code after matching the
laction} action

{semantic}?

Execute the semantic predicate code: if
it evaluates to true it considers the rule,
otherwise it does not

->command

Execute the specific command (see Lexer
Commands for a list of valid commands.

ANTLR Cheatsheets

PAGE

— 07

In characters sets ANTLR supports the standard Unicode properties set in the
official documentation Annex 44. You should look the official documentation to
get the full list, a description and a list of associated Unicode code points.

Unicode Properties Supported

Property names are case-insensitive, _ and - are treated identically.
ANTLR supports referencing:

* all code points associated to a property and

* all code points with a specific value of a property

These are two examples of their usage.

MATH :[\p{Math}];
CYRILLIC : [\p{Script=Cyrillic}] ;

If you input a non-existing property the ANTLR command line tool will throw
an error and will fail to generate the lexer, parser, etc. For example, trying this

property.

FAKE :[\p{FakeProperty}];

Will results in this exception.

java.lang.RuntimeException: set is empty

In addition to these standard properties, ANTLR also supports extra properties
all related to emoji.

Extended_Pictographic and Emoji
Used as \p{Extended_Pictographic} and \p{Emoji}.

These are similar properties, but there is a difference. Emoji are the standard
set of graphical representation of feelings, attitude, etc. that everybody knows,
such as (GRINNING FACE). However, there are also simplified graphical repre-
sentation of object, like the [f (BLACK CROSS ON SHIELD). Think about Unicode
point with the property extended pictographic as the kind of stuff that appears
in traffic signs and the like. Some code points can belong to both categories.

ANTLR Cheatsheets

https://unicode.org/reports/tr44/#Properties

PAGE

— 08

The EmojiPresentation property refer to the style of the emoji shown to the user.
The Emoji style represent the classical style that you see in Smartphone. Text
style instead is a more simplified representation, in black and white, that you

can encounter in simpler programs.

EmojiPresentation

ANTLR supports the value for this property

* \p{EmojiPresentation=EmojiDefault} Unicode code points that have an
Emoji style by default, but also have a Text style

* \p{EmojiPresentation=TextDefault} Unicode code points that have a Text
style by default, but also have an Emoji style

* \p{EmojiPresentation=Text} Unicode code points that only have a Text style

ANTLR Cheatsheets

PAGE

— 09

There are a few useful commands available to use in lexer rules. If there is more
than one command, they must be separated with a comma.

Lexer Commands

The commmands are:

* channel(CHANNEL_NAME)

* mode(MODE_NAME)

* popMode, pushMode(MODE_NAME)
* more

* skip

* type(TOKEN_NAME)

channel(CHANNEL_NAME)

COMMENT : /¥ ¥? %' -> channel(HIDDEN);

Use channel to change the channel in which the token is sent. Channels are like
production lines and allow to lookup independently different sets of tokens. By
default there are two channels:

* DEFAULT_CHANNEL
* HIDDEN

The HIDDEN channel is not used by the parser to match rules, so it is well suited
to receive comments and other content that does not matter to parsing, but it
might be useful to keep around.

mode(MODE_NAME)

lexer grammar Tag;
START :'<'->more, mode(TAG);
WHITESPACE : [\N\n]+ -> skip;

mode TAG;

/| everything ends up here

STRING :*'-> mode(DEFAULT_MODE) :
TEXT .. ->more;

After matching the token, it moves to the mode used as argument of the
command. The lexer will then only look at token of that mode. By default, all
tokens are considered in the DEFAULT_MODE.

ANTLR Cheatsheets

PAGE

popMode, pushMode(MODE_NAME) -| O

lexer grammar Tag;
START :'<'->more, pushMode(TAG) ;
WHITESPACE : [\r\n]+ -> skip ;

mode TAG;

/| everything ends up here
STRING :*>'->popMode;
TEXT .. ->more;

The command pushMode works just like mode: it changes the mode to the one
indicated. However, it then also pushes the old mode into a stack of modes. It
is used together with popMode, that switches the mode to the last one added to
the stack.

The two commands can be used to safely move between a series of modes
that can be entered and exited more ways than one. For instance, imagine that
you can access MODE_1 from MODE_2 and MODE_3, so when you exit MODE_]
you do not know where to go back to unless you record from which mode you
entered.

more

lexer grammar Tag;
START :'<'->more, mode(TAG);
WHITESPACE : [\r\n]+ -> skip ;

mode TAG;

/| everything ends up here

STRING :*>"-> mode(DEFAULT_MODE) ;
TEXT .. -> more;

The command more matches the rule but then continue looking for the next
token. The next token will include the text matched by this rule.

It is used most often with lexical modes to match the delimiters together with
the content that they match. In this example everything ends up as matched by
the STRING token.

skip

WHITESPACE : [\\n]+ -> skip ;

This command is used to make the lexer match the token but then not sent it
to the parser. Effectively this command makes the token invisible to the parser.

ANTLR Cheatsheets

PAGE

— 11

Command used to change the type of the token matched by the rule. It is
particularly useful when using lexical modes to support string interpolation.
Using this command, you can avoid repetitions in the parser.

type

LONG_COMMENT : /¥ *2 %' -> type(COMMENT);

ANTLR Cheatsheets

Parser Cheatsheet

PAGE

— 12

Matches

rule:
TOKEN A token with name TOKEN
N Any token but the one with the name
TOKEN TOKEN
‘literal’ String ‘literal’ (is also a token)
rulel Another parser rule with name rulel
. Any token
(a|b) The rule aortherule b
(a|b)? Nothing or the rule a or the rule b
(a | b)* Nothing or any number of rule a or the
rule b
(a| b)+ At least one time the rule a or the rule b
(2| b)?? Nothing or the rule a or the rule b, the
. fewer that still allows to then match ¢
Nothing or any number of rule a or the
(@a|b)*?c rule b, the fewer that still allows to then
match ¢
At least one time the rule a or the rule
(@a|b)+? c b, but the fewer that still allows to then
match ¢
Format Element

speaki'say’ NO;

The name of a parser rule must start
with a lowercase letter

{action}

Execute the action code after matching
the rue

{semantic}?

Execute the semantic predicate code: if
it evaluates to true it considers the rule,
otherwise it does not

Each alternative of the rule has a label.
LabellContext and Label2Context

| rulel #labell -

| rule2 #label2 classes and respective listener and
visitor methods will be created for each

label

| rulel #labell

| rule2 #labell The same labels can be repeated

Hutel-#abeh If one alternative has a label, all of the

trate2 must have one

ANTLR Cheatsheets

PAGE

— 15

Actions and Clauses Cheatsheet

rule returns|[variable_name] locals[variable_name]

@init { /* action code here ¥}

@after { /* action code here ¥}

: [* rule definition ¥ { /* action code here ¥ };

catch[RecognitionException e] { /* action code here ¥}

finally { /* action code here ¥}

ANTLR Cheatsheets

