

Class Diagram

Abstract
Class Interface

Client
Class

«interface»

Implementing
Class

provided interface

Set

 T

Set<Integer>

bound element

template class
Class

Association

Class

Class

realization

dependency

required interface

[UML 2]

p. 69

p. 78

object name : class

: class

1: message ()

Communication Diagram

role name

Use Case Diagram

Use Case

Actor «include»

Use Case

p. 71

p. 81

p. 131
p. 99

Composite Structure

part : Class

p. 135

Component

p. 139

This page intentionally left blank

Praise for UML Distilled

“UML Distilled remains the best introduction to UML notation. Martin’s agile
and pragmatic approach hits the sweet spot, and I wholeheartedly recommend
it!”

—Craig Larman
Author of Applying UML and Patterns

“Fowler cuts through the complexity of UML to get users started quickly.”

—Jim Rumbaugh
Author and originator of UML

“Martin Fowler’s UML Distilled is an excellent way to get started with UML.
In fact for most users, UML Distilled contains all you need to apply UML suc-
cessfully. As Martin points out, UML can be used in many ways, but the most
common is as a widely recognized notation for sketching designs. This book
does an excellent job of distilling the essence of UML. Highly recommended.”

—Steve Cook
Software Architect
Microsoft Corporation

“Short books on UML are better than long books on UML. This is still the best
short book on UML. In fact, it’s the best short book on many subjects.”

—Alistair Cockburn
Author and President, Humans and Technology

“The book is immensely useful, readable, and—one of its great virtues—
delightfully concise for the immense scope of its subject. If you only buy one
book on UML, this should be it.”

—Andy Carmichael
BetterSoftwareFaster, Ltd.

“If you’re using UML, this book should never be out of reach.”

—John Crupi
Distinguished Engineer, Sun Microsystems
Coauthor of Core J2EE™ Patterns

“Anyone doing UML modeling, learning UML, reading UML, or building
UML tools should have this latest edition. (I own all editions.) There is lots of
good, useful information; generally, just enough to be useful, but not too much
to be dry. It’s a must-have reference for my bookshelf!”

—Jon Kern
Modeler

“This is a great starting point for learning the fundamentals of the UML.”

—Scott W. Ambler
Author of Agile Modeling

“An eminently sensible description of UML and its usage, with enough humor to
hold one’s attention. ‘The swimming metaphor no longer holds water’ indeed!”

—Stephen J. Mellor
Coauthor of Executable UML

“This is the perfect book for those who want to use the UML but aren’t inter-
ested in reading thick UML reference books and research papers. Martin
Fowler selects all the critical techniques needed to use the UML for design
sketches, freeing the reader from complex and rarely used UML features. Read-
ers will find no shortage of suggestions for further reading. He gives the reader
advice based on experience. It’s a concise and readable book covering the essen-
tial aspects of the UML and related object-oriented concepts.”

—Pavel Hruby
Microsoft Business Solutions

“Like all good software developers, Fowler improves his product with each iter-
ation. This is the only book I consider when teaching a class involving UML or
if asked to recommend one that can be used to learn it.”

—Charles Ashbacher
President/CEO, Charles Ashbacher Technologies

“More books should be like UML Distilled—concise and readable. Martin
Fowler selects the parts of UML that you need, and presents them in an easy to
read style. More valuable than a mere description of the modeling language,
however, is the author’s insight and experience in how to use this technique to
communicate and document design.”

—Rob Purser
Purser Consulting, LLC.

UML Distilled
Third Edition

Ahmed/Umrysh, Developing Enterprise Java Applications with J2EE™
and UML

Arlow/Neustadt, Enterprise Patterns and MDA: Building Better Software
with Archetype Patterns and UML

Arlow/Neustadt, UML 2 and the Unified Process, Second Edition

Armour/Miller, Advanced Use Case Modeling: Software Systems

Bellin/Simone, The CRC Card Book

Bergström/Råberg, Adopting the Rational Unified Process: Success with
the RUP

Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools

Bittner/Spence, Managing Iterative Software Development Projects

Bittner/Spence, Use Case Modeling

Booch, Object Solutions: Managing the Object-Oriented Project

Booch, Object-Oriented Analysis and Design with Applications, 3E

Booch/Bryan, Software Engineering with ADA, 3E

Booch/Rumbaugh/Jacobson, The Unified Modeling Language User
Guide, Second Edition

Box et al., Effective COM: 50 Ways to Improve Your COM and
MTS-based Applications

Buckley/Pulsipher, The Art of ClearCase® Deployment

Carlson, Modeling XML Applications with UML: Practical e-Business
Applications

Clarke/Baniassad, Aspect-Oriented Analysis and Design

Collins, Designing Object-Oriented User Interfaces

Conallen, Building Web Applications with UML, 2E

D’Souza/Wills, Objects, Components, and Frameworks with UML:
The Catalysis(SM) Approach

Denney, Succeeding with Use Cases

Douglass, Doing Hard Time: Developing Real-Time Systems with UML,
Objects, Frameworks, and Patterns

Douglass, Real-Time Design Patterns: Robust Scalable Architecture for
Real-Time Systems

Douglass, Real Time UML, 3E: Advances in The UML for Real-Time
Systems

Eeles et al., Building J2EE™Applications with the Rational Unified Process

Fowler, Analysis Patterns: Reusable Object Models

Fowler, UML Distilled, 3E: A Brief Guide to the Standard Object
Modeling Language

Fowler et al., Refactoring: Improving the Design of Existing Code

Gomaa, Designing Concurrent, Distributed, and Real-Time Applications
with UML

Gomaa, Designing Software Product Lines with UML

Heinckiens, Building Scalable Database Applications: Object-Oriented
Design, Architectures, and Implementations

Hofmeister/Nord/Dilip, Applied Software Architecture

Jacobson/Booch/Rumbaugh, The Unified Software Development Process

Jacobson/Ng, Aspect-Oriented Software Development with Use Cases

Jordan, C++ Object Databases: Programming with the ODMG Standard

Kleppe/Warmer/Bast, MDA Explained: The Model Driven
Architecture™: Practice and Promise

Kroll/Kruchten, The Rational Unified Process Made Easy:
A Practitioner’s Guide to the RUP

Kroll/MacIsaac, Agility and Discipline Made Easy: Practices from
OpenUP and RUP

Kruchten, The Rational Unified Process, 3E: An Introduction

LaLonde, Discovering Smalltalk

Lau, The Art of Objects: Object-Oriented Design and Architecture

Leffingwell/Widrig, Managing Software Requirements, 2E:
A Use Case Approach

Manassis, Practical Software Engineering: Analysis and Design for the
.NET Platform

Marshall, Enterprise Modeling with UML: Designing Successful Software
through Business Analysis

McGregor/Sykes, A Practical Guide to Testing Object-Oriented Software

Mellor/Balcer, Executable UML: A Foundation for Model-Driven
Architecture

Mellor et al., MDA Distilled: Principles of Model-Driven Architecture

Naiburg/Maksimchuk, UML for Database Design

Oestereich, Developing Software with UML, 2E: Object-Oriented
Analysis and Design in Practice

Page-Jones, Fundamentals of Object-Oriented Design in UML

Pohl, Object-Oriented Programming Using C++, 2E

Quatrani, Visual Modeling with Rational Rose 2002 and UML

Rector/Sells, ATL Internals

Reed, Developing Applications with Visual Basic and UML

Rosenberg/Scott, Applying Use Case Driven Object Modeling with UML:
An Annotated e-Commerce Example

Rosenberg/Scott, Use Case Driven Object Modeling with UML:
A Practical Approach

Royce, Software Project Management: A Unified Framework

Rumbaugh/Jacobson/Booch, The Unified Modeling Language Reference
Manual

Schneider/Winters, Applying Use Cases, 2E: A Practical Guide

Smith, IBM Smalltalk

Smith/Williams, Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software

Tavares/Fertitta/Rector/Sells, ATL Internals, Second Edition

Tkach/Fang/So, Visual Modeling Technique

Unhelkar, Process Quality Assurance for UML-Based Projects

Warmer/Kleppe, The Object Constraint Language, 2E: Getting Your
Models Ready for MDA

White, Software Configuration Management Strategies and Rational
ClearCase®: A Practical Introduction

The Component Software Series
Clemens Szyperski, Series Editor
For more information, check out the series web site at
www.awprofessional.com/csseries.

Cheesman/Daniels, UML Components: A Simple Process for Specifying
Component-Based Software

Szyperski, Component Software, 2E: Beyond Object-Oriented
Programming

The Addison-Wesley Object Technology Series
Grady Booch, Ivar Jacobson, and James Rumbaugh, Series Editors
For more information, check out the series web site at www.awprofessional.com/otseries.

../../../../../www.awprofessional.com/csseries
../../../../../www.awprofessional.com/otseries

UML Distilled
Third Edition

A Brief Guide to the Standard
Object Modeling Language

Martin Fowler

Boston • San Francisco • New York • Toronto • Montreal
London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Addison-
Wesley was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportuni-
ties (which may include electronic versions; custom cover designs; and content particular
to your business, training goals, marketing focus, or branding interests), please contact
our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Fowler, Martin, 1963–
UML distilled : a brief guide to the standard object modeling language / Martin

Fowler.—3rd ed.
p. cm.

Includes bibliographical references and index.
ISBN 0-321-19368-7 (alk. paper)
1. Object-oriented methods (Computer science) 2. Computer software—

Development. 3. UML (Computer science) I. Title.

QA76.9.O35F695 2003
005.1'7—dc22 2003057759

Copyright © 2004 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education
Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-321-19368-1
ISBN-10: 0-321-19368-7

22 17

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
../../../../../informit.com/aw
../../../../../www.pearsoned.com/permissions/default.htm

For Cindy

This page intentionally left blank

xi

Contents

List of Figures .xvii

Foreword to the Third Edition . xxi

Foreword to the First Edition . xxiii

Preface . xxv

Why Bother with the UML? . xxvi
Structure of the Book .xxvii
Changes for the Third Edition .xxvii
Acknowledgments . xxviii

Chapter 1: Introduction . 1

What Is the UML? .1
Ways of Using the UML .2
How We Got to the UML .7
Notations and Meta-Models .9
UML Diagrams .10
What Is Legal UML? .13
The Meaning of UML .14
UML Is Not Enough .14
Where to Start with the UML .16
Where to Find Out More .16

Chapter 2: Development Process . 19

Iterative and Waterfall Processes .19
Predictive and Adaptive Planning .23
Agile Processes .24
Rational Unified Process .25

xii CONTENTS

Fitting a Process to a Project .26
Fitting the UML into a Process .29

Requirements Analysis .29
Design .30
Documentation .31
Understanding Legacy Code .32

Choosing a Development Process .33
Where to Find Out More .33

Chapter 3: Class Diagrams: The Essentials . 35

Properties .35
Attributes .36
Associations .37

Multiplicity .38
Programming Interpretation of Properties .39
Bidirectional Associations .41
Operations .43
Generalization .45
Notes and Comments .46
Dependency .47
Constraint Rules .49
When to Use Class Diagrams .51
Where to Find Out More .52

Chapter 4: Sequence Diagrams . 53

Creating and Deleting Participants .56
Loops, Conditionals, and the Like .57
Synchronous and Asynchronous Calls .61
When to Use Sequence Diagrams .61

Chapter 5: Class Diagrams: Advanced Concepts . 65

Keywords .65
Responsibilities .66
Static Operations and Attributes .66
Aggregation and Composition .67
Derived Properties .68
Interfaces and Abstract Classes .69
Read-Only and Frozen .72
Reference Objects and Value Objects .73

CONTENTS xiii

Qualified Associations .74
Classification and Generalization .75
Multiple and Dynamic Classification .76
Association Class .78
Template (Parameterized) Class .81
Enumerations .82
Active Class .83
Visibility .83
Messages .84

Chapter 6: Object Diagrams . 87

When to Use Object Diagrams .87

Chapter 7: Package Diagrams . 89

Packages and Dependencies .91
Package Aspects .93
Implementing Packages .94
When to Use Package Diagrams .95
Where to Find Out More .95

Chapter 8: Deployment Diagrams . 97

When to Use Deployment Diagrams .98

Chapter 9: Use Cases . 99

Content of a Use Case .100
Use Case Diagrams .102
Levels of Use Cases .103
Use Cases and Features (or Stories) .104
When to Use Use Cases .104
Where to Find Out More .105

Chapter 10: State Machine Diagrams. 107

Internal Activities .109
Activity States .109
Superstates .110
Concurrent States .111
Implementing State Diagrams .111
When to Use State Diagrams .114
Where to Find Out More .115

xiv CONTENTS

Chapter 11: Activity Diagrams . 117

Decomposing an Action .119
Partitions .120
Signals .121
Tokens .124
Flows and Edges .124
Pins and Transformations .125
Expansion Regions .126
Flow Final .127
Join Specifications .128
And There’s More .129
When to Use Activity Diagrams .129
Where to Find Out More .130

Chapter 12: Communication Diagrams . 131

When to Use Communication Diagrams .133

Chapter 13: Composite Structures . 135

When to Use Composite Structures .137

Chapter 14: Component Diagrams . 139

When to Use Component Diagrams .141

Chapter 15: Collaborations . 143

When to Use Collaborations .146

Chapter 16: Interaction Overview Diagrams . 147

When to Use Interaction Overview Diagrams147

Chapter 17: Timing Diagrams . 149

When to Use Timing Diagrams .150

Appendix: Changes between UML Versions . 151

Revisions to the UML .151
Changes in UML Distilled .152
Changes from UML 1.0 to 1.1 .153

Type and Implementation Class .153
Complete and Incomplete Discriminator Constraints154
Composition .154
Immutability and Frozen .154

CONTENTS xv

Returns on Sequence Diagrams .154
Use of the Term “Role” .155

Changes from UML 1.2 (and 1.1) to 1.3 (and 1.5)155
Use Cases .155
Activity Diagrams .156

Changes from UML 1.3 to 1.4 .157
Changes from UML 1.4. to 1.5 .157
From UML 1.x to UML 2.0 .157

Class Diagrams: The Essentials (Chapter 3)158
Sequence Diagrams (Chapter 4) .158
Class Diagrams: Concepts (Chapter 5) .158
State Machine Diagrams (Chapter 10) .159
Activity Diagrams (Chapter 11) .159

Bibliography . 161

Index .167

This page intentionally left blank

xvii

List of Figures

Figure 1.1: A small piece of the UML meta-model10
Figure 1.2: Classification of UML diagram types .12
Figure 1.3: An informal screen flow diagram for part

of the wiki (http://c2.com/cgi/wiki) .15

Figure 3.1: A simple class diagram .36
Figure 3.2: Showing properties of an order as attributes 37
Figure 3.3: Showing properties of an order as associations38
Figure 3.4: A bidirectional association .42
Figure 3.5: Using a verb phrase to name an association 42
Figure 3.6: A note is used as a comment on

one or more diagram elements .46
Figure 3.7: Example dependencies .47

Figure 4.1: A sequence diagram for centralized control 54
Figure 4.2: A sequence diagram for distributed control 55
Figure 4.3: Creation and deletion of participants .57
Figure 4.4: Interaction frames .58
Figure 4.5: Older conventions for control logic .60
Figure 4.6: A sample CRC card .62

Figure 5.1: Showing responsibilities in a class diagram67
Figure 5.2: Static notation .67
Figure 5.3: Aggregation .68
Figure 5.4: Composition .68
Figure 5.5: Derived attribute in a time period .69
Figure 5.6: A Java example of interfaces and an abstract class70
Figure 5.7: Ball-and-socket notation .71
Figure 5.8: Older dependencies with lollipops .72
Figure 5.9: Using a lollipop to show polymorphism

in a sequence diagram .73

../../../../../c2.com/cgi/wiki

xviii LIST OF FIGURES

Figure 5.10: Qualified association .75
Figure 5.11: Multiple classification .77
Figure 5.12: Association class .78
Figure 5.13: Promoting an association class to a full class 78
Figure 5.14: Association class subtleties (Role should probably

not be an association class) .79
Figure 5.15: Using a class for a temporal relationship 80
Figure 5.16: «Temporal» keyword for associations .80
Figure 5.17: Template class .81
Figure 5.18: Bound element (version 1) .82
Figure 5.19: Bound element (version 2) .82
Figure 5.20: Enumeration .83
Figure 5.21: Active class .83
Figure 5.22: Classes with messages .84

Figure 6.1: Class diagram of Party composition structure 88
Figure 6.2: Object diagram showing example instances of Party 88

Figure 7.1: Ways of showing packages on diagrams90
Figure 7.2: Package diagram for an enterprise application92
Figure 7.3: Separating Figure 7.2 into two aspects93
Figure 7.4: A package implemented by other packages94
Figure 7.5: Defining a required interface in a client package95

Figure 8.1: Example deployment diagram .98

Figure 9.1: Example use case text .101
Figure 9.2: Use case diagram .103

Figure 10.1: A simple state machine diagram .108
Figure 10.2: Internal events shown with the typing state

of a text field .109
Figure 10.3: A state with an activity .110
Figure 10.4: Superstate with nested substates .111
Figure 10.5: Concurrent orthogonal states .112
Figure 10.6: A C# nested switch to handle the state

transition from Figure 10.1 .113
Figure 10.7: A State pattern implementation for Figure 10.1 114

Figure 11.1: A simple activity diagram .118
Figure 11.2: A subsidiary activity diagram .120

LIST OF FIGURES xix

Figure 11.3: The activity of Figure 11.1 modified
to call Figure 11.2 .121

Figure 11.4: Partitions on an activity diagram .122
Figure 11.5: Signals on an activity diagram .123
Figure 11.6: Sending and receiving signals .123
Figure 11.7: Four ways of showing an edge .125
Figure 11.8: Transformation on a flow .126
Figure 11.9: Expansion region .127
Figure 11.10: Shorthand for a single action in an expansion region127
Figure 11.11: Flow finals in an activity .128
Figure 11.12: Join specification .129

Figure 12.1: Communication diagram for centralized control 132
Figure 12.2: Communication diagram with nested

decimal numbering .132

Figure 13.1: Two ways of showing a TV viewer and its interfaces 136
Figure 13.2: Internal view of a component

(example suggested by Jim Rumbaugh) 136
Figure 13.3: A component with multiple ports .137

Figure 14.1: Notation for components .140
Figure 14.2: An example component diagram .140

Figure 15.1: A collaboration with its class diagram of roles144
Figure 15.2: A sequence diagram for the auction collaboration 144
Figure 15.3: A collaboration occurrence .145
Figure 15.4: A nonstandard way of showing pattern

use in JUnit (junit.org) .145

Figure 16.1: Interaction summary diagram .148

Figure 17.1: Timing diagram showing states as lines 150
Figure 17.2: Timing diagram showing states as areas150

../../../../../junit.org/default.htm

This page intentionally left blank

xxi

Foreword to
the Third Edition

Since ancient times, the most talented architects and the most gifted designers
have known the law of parsimony. Whether it is stated as a paradox (“less is
more”), or a koan (“Zen mind is beginner’s mind”), its wisdom is timeless:
Reduce everything to its essence so that form harmonizes with function. From
the pyramids to the Sydney Opera House, from von Neumann architectures to
UNIX and Smalltalk, the best architects and designers have strived to follow
this universal and eternal principle.

Recognizing the value of shaving with Occam’s Razor, when I architect and
read I seek projects and books that adhere to the law of parsimony. Conse-
quently, I applaud the book you are reading now.

You may find my last remark surprising at first. I am frequently associated
with the voluminous and dense specifications that define the Unified Modeling
Language (UML). These specifications allow tool vendors to implement the UML
and methodologists to apply it. For seven years, I have chaired large international
standardization teams to specify UML 1.1 and UML 2.0, as well as several minor
revisions in between. During this time, the UML has matured in expressiveness
and precision, but it has also added gratuitous complexity as a result of the stan-
dardization process. Regrettably, standardization processes are better known for
design-by-committee compromises than parsimonious elegance.

What can a UML expert familiar with the arcane minutiae of the specifica-
tion learn from Martin’s distillation of UML 2.0? Quite a bit, as can you. To
start with, Martin adroitly reduces a large and complex language into a prag-
matic subset that he has proven effective in his practice. He has resisted the easy
route of tacking on additional pages to the last edition of his book. As the lan-
guage has grown, Martin has kept true to his goal of seeking the “fraction of
UML that is most useful” and telling you just that. The fraction he refers to is

xxii FOREWORD TO THE THIRD EDITION

the mythical 20 percent of UML that helps you do 80 percent of your work.
Capturing and taming this elusive beast is no mean accomplishment!

It is even more impressive that Martin achieves this goal while writing in a
wonderfully engaging conversational style. By sharing his opinions and anec-
dotes with us, he makes this book fun to read and reminds us that architecting
and designing systems should be both creative and productive. If we pursue the
parsimony koan to its full intent, we should find UML modeling projects to be
as enjoyable as we found finger-painting and drawing classes in grammar
school. UML should be a lightning rod for our creativity as well as a laser for
precisely specifying system blueprints so that third parties can bid and build
those systems. The latter is the acid test for any bona fide blueprint language.

So, while this may be a small book, it is not a trivial one. You can learn as
much from Martin’s approach to modeling as you can learn from his explana-
tions of UML 2.0.

I have enjoyed working with Martin to improve the selection and correctness
of the UML 2.0 language features explained in this revision. We need to keep in
mind that all living languages, both natural and synthetic, must evolve or per-
ish. Martin’s choices of new features, along with your preferences and those of
other practitioners, are a crucial part of the UML revision process. They keep
the language vital and help it evolve via natural selection in the marketplace.

Much challenging work remains before model-driven development becomes
mainstream, but I am encouraged by books like this that explain UML model-
ing basics clearly and apply them pragmatically. I hope you will learn from it as
I have and will use your new insights to improve your own software modeling
practices.

Cris Kobryn
Chair, U2 Partners’ UML 2.0 Submission Team
Chief Technologist, Telelogic

xxiii

Foreword to
the First Edition

When we began to craft the Unified Modeling Language, we hoped that we
could produce a standard means of expressing design that would not only
reflect the best practices of industry, but would also help demystify the process
of software system modeling. We believed that the availability of a standard
modeling language would encourage more developers to model their software
systems before building them. The rapid and widespread adoption of the UML
demonstrates that the benefits of modeling are indeed well known to the devel-
oper community.

The creation of the UML was itself an iterative and incremental process very
similar to the modeling of a large software system. The end result is a standard
built on, and reflective of, the many ideas and contributions made by numerous
individuals and companies from the object community. We began the UML
effort, but many others helped bring it to a successful conclusion; we are grate-
ful for their contribution.

Creating and agreeing on a standard modeling language is a significant chal-
lenge by itself. Educating the development community, and presenting the UML
in a manner that is both accessible and in the context of the software develop-
ment process, is also a significant challenge. In this deceptively short book,
updated to reflect the most recent changes to the UML, Martin Fowler has
more than met this challenge.

In a clear and friendly style, Martin not only introduces the key aspects of
UML, but also clearly demonstrates the role UML plays in the development
process. Along the way, we are treated to abundant nuggets of modeling
insight and wisdom drawn from Martin’s 12-plus years of design and model-
ing experience.

xxiv FOREWORD TO THE FIRST EDITION

The result is a book that has introduced many thousands of developers to
UML, whetting their appetite to further explore the many benefits of modeling
with this now standard modeling language.

We recommend the book to any modeler or developer interested in getting a
first look at UML and in gaining a perspective on the key role it plays in the
development process.

Grady Booch
Ivar Jacobson
James Rumbaugh

xxv

Preface

I’ve been lucky in a lot of ways in my life; one of my great strokes of fortune
was being in the right place with the right knowledge to write the first edition of
this book in 1997. Back then, the chaotic world of object-oriented (OO) model-
ing was just beginning to unify under the Unified Modeling Language (UML).
Since then, the UML has become the standard for the graphical modeling of
software, not just for objects. My fortune is that this book has been the most
popular book on the UML, selling more than a quarter of a million copies.

Well, that’s very nice for me, but should you buy this book?
I like to stress that this is a brief book. It’s not intended to give you the details

on every facet of the UML, which has grown and grown over the years. My
intention is to find that fraction of the UML that is most useful and tell you just
that. Although a bigger book gives you more detail, it also takes longer to read.
And your time is the biggest investment you’ll make in a book. By keeping this
book small, I’ve spent the time selecting the best bits to save you from having to
do that selection yourself. (Sadly, being smaller doesn’t mean proportionately
cheaper; there is a certain fixed cost to producing a quality technical book.)

One reason to have this book is to begin to learn about the UML. Because
this is a short book, it will quickly get you up to speed on the essentials of the
UML. With that under your belt, you can go into more detail on the UML with
the bigger books, such as the User Guide [Booch, UML user] or the Reference
Manual [Rumbaugh, UML Reference].

This book can also act as a handy reference to the most common parts of the
UML. Although the book doesn’t cover everything, it’s a lot lighter to carry
around than most other UML books.

It’s also an opinionated book. I’ve been working with objects for a long time
now, and I have definite ideas about what works and what doesn’t. Any book
reflects the opinions of the author, and I don’t try to hide mine. So if you’re
looking for something that has a flavor of objectivity, you might want to try
something else.

xxvi PREFACE

Although many people have told me that this book is a good introduction to
objects, I didn’t write it with that in mind. If you are after an introduction to OO
design, I suggest Craig Larman’s book [Larman].

Many people who are interested in the UML are using tools. This book con-
centrates on the standard and on conventional usage of the UML and doesn’t
get into the details of what various tools support. Although the UML did
resolve the tower of Babel of pre-UML notations, many annoying differences
remain between what tools show and allow when drawing UML diagrams.

I don’t say much in this book about Model Driven Architecture (MDA).
Although many people consider the two to be the same thing, many developers
use the UML without being interested in MDA. If you want to learn more
about MDA, I would start with this book to get an overview of the UML first
and then move on to a book that’s more specific about MDA.

Although the main point of this book is the UML, I’ve also added bits of
other material about techniques, such as CRC cards, that are valuable for OO
design. The UML is just a part of what you need to succeed with objects, and I
think that it’s important to introduce you to some other techniques.

In a brief book like this, it’s impossible to go into detail about how the UML
relates to source code, particularly as there is no standard way of making that
correspondence. However, I do point out common coding techniques for imple-
menting pieces of the UML. My code examples are in Java and C#, as I’ve found
that these languages are usually the most widely understood. Don’t assume that
I prefer those languages; I’ve done too much Smalltalk for that!

Why Bother with the UML?

Graphical design notations have been with us for a while. For me, their primary
value is in communication and understanding. A good diagram can often help
communicate ideas about a design, particularly when you want to avoid a lot of
details. Diagrams can also help you understand either a software system or a
business process. As part of a team trying to figure out something, diagrams
both help understanding and communicate that understanding throughout a
team. Although they aren’t, at least yet, a replacement for textual programming
languages, they are a helpful assistant.

Many people believe that in the future, graphical techniques will play a dom-
inant role in software development. I’m more skeptical of that, but it’s certainly
useful to have an appreciation of what these notations can and can’t do.

Of these graphical notations, the UML’s importance comes from its wide use
and standardization within the OO development community. The UML has

PREFACE xxvii

become not only the dominant graphical notation within the OO world but
also a popular technique in non-OO circles.

Structure of the Book

Chapter 1 gives an introduction to the UML: what it is, the different meanings
it has to different people, and where it came from.

Chapter 2 talks about software process. Although this is strictly independent
of the UML, I think that it’s essential to understand process in order to see the
context of something like the UML. In particular, it’s important to understand
the role of iterative development, which has been the underlying approach to
process for most of the OO community.

I’ve organized the rest of the book around the diagram types within the
UML. Chapters 3 and 4 discuss the two most useful parts of the UML: class
diagrams (core) and sequence diagrams. Even though this book is slim, I believe
that you can get the most value out of the UML by using the techniques that I
talk about in these chapters. The UML is a large and growing beast, but you
don’t need all of it.

Chapter 5 goes into detail on the less essential but still useful parts of class
diagrams. Chapters 6 through 8 describe three useful diagrams that shed fur-
ther light on the structure of a system: object diagrams, package diagrams, and
deployment diagrams.

Chapters 9 through 11 show three further useful behavioral techniques: use
cases, state diagrams (although officially known as state machine diagrams, they
are generally called state diagrams), and activity diagrams. Chapters 12 through
17 are very brief and cover diagrams that are generally less important, so for
these, I’ve only provided a quick example and explanation.

The inside covers summarize the most useful parts of the notation. I’ve often
heard people say that these covers are the most valuable part of the book.
You’ll probably find it handy to refer to them as you’re reading some of the
other parts of the book.

Changes for the Third Edition

If you have earlier editions of this book, you’re probably wondering what is dif-
ferent and, more important, whether you should buy the new edition.

xxviii PREFACE

The primary trigger for the third edition was the appearance of UML 2.
UML 2 has added a lot of new stuff, including several new diagram types. Even
familiar diagrams have a lot of new notation, such as interaction frames in
sequence diagrams. If you want to be aware of what’s happened but don’t want
to wade through the specification (I certainly don’t recommend that!), this book
should give you a good overview.

I’ve also taken this opportunity to completely rewrite most of the book,
bringing the text and examples up to date. I’ve incorporated much that I’ve
learned in teaching and using the UML over the past five years. So although the
spirit of this ultrathin UML book is intact, most of the words are new.

Over the years, I’ve worked hard to keep this book as current as is possible.
As the UML has gone through its changes, I’ve done my best to keep pace. This
book is based on the UML 2 drafts that were accepted by the relevant commit-
tee in June 2003. It’s unlikely that further changes will occur between that vote
and more formal votes, so I feel that UML 2 is now stable enough for my revi-
sion to go into print. I’ll post information any further updates on my Web site
(http://martinfowler.com).

Acknowledgments

Over many years, many people have been part of the success of this book. My
first thanks go Carter Shanklin and Kendall Scott. Carter was the editor at
Addison-Wesley who suggested this book to me. Kendall Scott helped me put
together the first two editions, working over the text and graphics. Between
them, they pulled off the impossible in getting the first edition out in an impos-
sibly short time, while keeping up the high quality that people expect from
Addison-Wesley. They also kept pushing out changes during the early days of
the UML when nothing seemed stable.

Jim Odell has been my mentor and guide for much of the early part of my
career. He’s also been deeply involved with the technical and personal issues of
making opinionated methodologists settle their differences and agree to a com-
mon standard. His contribution to this book is both profound and difficult to
measure, and I bet it’s the same for the UML too.

The UML is a creature of standards, but I’m allergic to standards bodies. So
to know what’s going on, I need a network of spies who can keep me up to
date on all the machinations of the committees. Without these spies, including
Conrad Bock, Steve Cook, Cris Kobryn, Jim Odell, Guus Ramackers, and Jim

../../../../../martinfowler.com/default.htm

PREFACE xxix

Rumbaugh, I would be sunk. They’ve all given me useful tips and answered
stupid questions.

Grady Booch, Ivar Jacobson, and Jim Rumbaugh are known as the Three
Amigos. Despite the playful jibes I’ve given them over the years, they have given
me much support and encouragement with this book. Never forget that my jabs
usually sprout from fond appreciation.

Reviewers are the key to a book’s quality, and I learned from Carter that you
can never have too many reviewers. The reviewers of the previous editions of
this book were Simmi Kochhar Bhargava, Grady Booch, Eric Evans, Tom Had-
field, Ivar Jacobson, Ronald E. Jeffries, Joshua Kerievsky, Helen Klein, Jim
Odell, Jim Rumbaugh, and Vivek Salgar.

The third edition also had a fine group of reviewers:

All these reviewers spent time reading the manuscript, and every one of them
found at least one embarrassing howler. My sincere thanks to all of them. Any
howlers that remain are entirely my responsibility. I will post an errata sheet to
the books section of martinfowler.com when I find them.

The core team that designed and wrote the UML specification are Don Baisley,
Morgan Björkander, Conrad Bock, Steve Cook, Philippe Desfray, Nathan Dyk-
man, Anders Ek, David Frankel, Eran Gery, Øystein Haugen, Sridhar Iyengar,
Cris Kobryn, Birger Møller-Pedersen, James Odell, Gunnar Övergaard, Karin
Palmkvist, Guus Ramackers, Jim Rumbaugh, Bran Selic, Thomas Weigert, and
Larry Williams. Without them, I would have nothing to write about.

Pavel Hruby developed some excellent Visio templates that I use a lot for
UML diagrams; you can get them at http://phruby.com.

Many people have contacted me on the Net and in person with suggestions
and questions and to point out errors. I haven’t been able to keep track of you
all, but my thanks are no less sincere.

The people at my favorite technical bookstore, SoftPro in Burlington, Massa-
chusetts, let me spend many hours there looking at their stock to find how peo-
ple use the UML in practice and fed me good coffee while I was there.

Conrad Bock
Andy Carmichael
Alistair Cockburn
Steve Cook
Luke Hohmann
Pavel Hruby
Jon Kern
Cris Kobryn

Craig Larman
Steve Mellor
Jim Odell
Alan O’Callaghan
Guus Ramackers
Jim Rumbaugh
Tim Seltzer

../../../../../martinfowler.com/default.htm
../../../../../phruby.com/default.htm

xxx PREFACE

For the third edition, the acquisition editor was Mike Hendrickson. Kim
Arney Mulcahy managed the project, as well as did the layout and clean-up of
the diagrams. John Fuller, at Addison-Wesley, was the production editor, while
Evelyn Pyle and Rebecca Rider helped with the copyediting and proofreading of
the book. I thank them all.

Cindy has stayed with me while I persist in writing books. She then plants
the proceeds in the garden.

My parents started me off with a good education, from which all else springs.

Martin Fowler
Melrose, Massachusetts
http://martinfowler.com

../../../../../martinfowler.com/default.htm

1

Chapter 1

Introduction

What Is the UML?

The Unified Modeling Language (UML) is a family of graphical notations,
backed by single meta-model, that help in describing and designing software
systems, particularly software systems built using the object-oriented (OO)
style. That’s a somewhat simplified definition. In fact, the UML is a few differ-
ent things to different people. This comes both from its own history and from
the different views that people have about what makes an effective software
engineering process. As a result, my task in much of this chapter is to set the
scene for this book by explaining the different ways in which people see and use
the UML.

Graphical modeling languages have been around in the software industry for
a long time. The fundamental driver behind them all is that programming lan-
guages are not at a high enough level of abstraction to facilitate discussions
about design.

Despite the fact that graphical modeling languages have been around for a
long time, there is an enormous amount of dispute in the software industry
about their role. These disputes play directly into how people perceive the role
of the UML itself.

The UML is a relatively open standard, controlled by the Object Manage-
ment Group (OMG), an open consortium of companies. The OMG was formed
to build standards that supported interoperability, specifically the interoperabil-
ity of object-oriented systems. The OMG is perhaps best known for the
CORBA (Common Object Request Broker Architecture) standards.

The UML was born out of the unification of the many object-oriented graph-
ical modeling languages that thrived in the late 1980s and early 1990s. Since its
appearance in 1997, it has relegated that particular tower of Babel to history.
That’s a service I, and many other developers, am deeply thankful for.

2 CHAPTER 1 INTRODUCTION

Ways of Using the UML

At the heart of the role of the UML in software development are the different
ways in which people want to use it, differences that carry over from other
graphical modeling languages. These differences lead to long and difficult argu-
ments about how the UML should be used.

To untangle this, Steve Mellor and I independently came up with a character-
ization of the three modes in which people use the UML: sketch, blueprint, and
programming language. By far the most common of the three, at least to my
biased eye, is UML as sketch. In this usage, developers use the UML to help
communicate some aspects of a system. As with blueprints, you can use sketches
in a forward-engineering or reverse-engineering direction. Forward engineering
draws a UML diagram before you write code, while reverse engineering builds a
UML diagram from existing code in order to help understand it.

The essence of sketching is selectivity. With forward sketching, you rough
out some issues in code you are about to write, usually discussing them with a
group of people on your team. Your aim is to use the sketches to help commu-
nicate ideas and alternatives about what you’re about to do. You don’t talk
about all the code you are going to work on, only important issues that you
want to run past your colleagues first or sections of the design that you want to
visualize before you begin programming. Sessions like this can be very short: a
10-minute session to discuss a few hours of programming or a day to discuss a
2-week iteration.

With reverse engineering, you use sketches to explain how some part of a
system works. You don’t show every class, simply those that are interesting and
worth talking about before you dig into the code.

Because sketching is pretty informal and dynamic, you need to do it quickly
and collaboratively, so a common medium is a whiteboard. Sketches are also
useful in documents, in which case the focus is communication rather than com-
pleteness. The tools used for sketching are lightweight drawing tools, and often
people aren’t too particular about keeping to every strict rule of the UML. Most
UML diagrams shown in books, such as my other books, are sketches. Their
emphasis is on selective communication rather than complete specification.

In contrast, UML as blueprint is about completeness. In forward engineer-
ing, the idea is that blueprints are developed by a designer whose job is to build
a detailed design for a programmer to code up. That design should be suffi-
ciently complete in that all design decisions are laid out, and the programmer
should be able to follow it as a pretty straightforward activity that requires little
thought. The designer may be the same person as the programmer, but usually

WAYS OF USING THE UML 3

the designer is a more senior developer who designs for a team of programmers.
The inspiration for this approach is other forms of engineering in which profes-
sional engineers create engineering drawings that are handed over to construc-
tion companies to build.

Blueprinting may be used for all details, or a designer may draw blueprints
to a particular area. A common approach is for a designer to develop blueprint-
level models as far as interfaces of subsystems but then let developers work out
the details of implementing those details.

In reverse engineering, blueprints aim to convey detailed information about
the code either in paper documents or as an interactive graphical browser. The
blueprints can show every detail about a class in a graphical form that’s easier
for developers to understand.

Blueprints require much more sophisticated tools than sketches do in order
to handle the details required for the task. Specialized CASE (computer-aided
software engineering) tools fall into this category, although the term CASE has
become a dirty word, and vendors try to avoid it now. Forward-engineering
tools support diagram drawing and back it up with a repository to hold the
information. Reverse-engineering tools read source code and interpret from it
into the repository and generate diagrams. Tools that can do both forward and
reverse engineering like this are referred to as round-trip tools.

Some tools use the source code itself as the repository and use diagrams as a
graphic viewport on the code. These tools tie much more closely into program-
ming and often integrate directly with programming editors. I like to think of
these as tripless tools.

The line between blueprints and sketches is somewhat blurry, but the distinc-
tion, I think, rests on the fact that sketches are deliberately incomplete, high-
lighting important information, while blueprints intend to be comprehensive,
often with the aim of reducing programming to a simple and fairly mechanical
activity. In a sound bite, I’d say that sketches are explorative, while blueprints
are definitive.

As you do more and more in the UML and the programming gets increasingly
mechanical, it becomes obvious that the programming should be automated.
Indeed, many CASE tools do some form of code generation, which automates
building a significant part of a system. Eventually, however, you reach the point
at which all the system can be specified in the UML, and you reach UML as pro-
gramming language. In this environment, developers draw UML diagrams that
are compiled directly to executable code, and the UML becomes the source code.
Obviously, this usage of UML demands particularly sophisticated tooling. (Also,
the notions of forward and reverse engineering don’t make any sense for this
mode, as the UML and source code are the same thing.)

4 CHAPTER 1 INTRODUCTION

Model Driven Architecture and Executable UML

When people talk about the UML, they also often talk about Model
Driven Architecture (MDA) [Kleppe et al.]. Essentially, MDA is a standard
approach to using the UML as a programming language; the standard is
controlled by the OMG, as is the UML. By producing a modeling environ-
ment that conforms to the MDA, vendors can create models that can also
work with other MDA-compliant environments.

MDA is often talked about in the same breath as the UML because
MDA uses the UML as its basic modeling language. But, of course, you
don’t have to be using MDA to use the UML.

MDA divides development work into two main areas. Modelers repre-
sent a particular application by creating a Platform Independent Model
(PIM). The PIM is a UML model that is independent of any particular
technology. Tools can then turn a PIM into a Platform Specific Model
(PSM). The PSM is a model of a system targeted to a specific execution
environment. Further tools then take the PSM and generate code for that
platform. The PSM could be UML but doesn’t have to be.

So if you want to build a warehousing system using MDA, you would
start by creating a single PIM of your warehousing system. If you then
wanted this warehousing system to run on J2EE and .NET, you would use
some vendor tools to create two PSMs: one for each platform. Then fur-
ther tools would generate code for the two platforms.

If the process of going from PIM to PSM to final code is completely
automated, we have the UML as programming language. If any of the
steps is manual, we have blueprints.

Steve Mellor has long been active in this kind of work and has recently
used the term Executable UML [Mellor and Balcer]. Executable UML is
similar to MDA but uses slightly different terms. Similarly, you begin with
a platform-independent model that is equivalent to MDA’s PIM. However,
the next step is to use a Model Compiler to turn that UML model into a
deployable system in a single step; hence, there’s no need for the PSM. As
the term compiler suggests, this step is completely automatic.

The model compilers are based on reusable archetypes. An archetype
describes how to take an executable UML model and turn it into a partic-
ular programming platform. So for the warehousing example, you would
buy a model compiler and two archetypes (J2EE and .NET). Run each
archetype on your executable UML model, and you have your two ver-
sions of the warehousing system.

WAYS OF USING THE UML 5

One of the interesting questions around the UML as programming language
is how to model behavioral logic. UML 2 offers three ways of behavioral mod-
eling: interaction diagrams, state diagrams, and activity diagrams. All have
their proponents for programming in. If the UML does gain popularity as a
programming language, it will be interesting to see which of these techniques
become successful.

Another way in which people look at the UML is the range between using it
for conceptual and for software modeling. Most people are familiar with the
UML used for software modeling. In this software perspective, the elements of
the UML map pretty directly to elements in a software system. As we shall see,
the mapping is by no means prescriptive, but when we use the UML, we are
talking about software elements.

With the conceptual perspective, the UML represents a description of the
concepts of a domain of study. Here, we aren’t talking about software elements
so much as we are building a vocabulary to talk about a particular domain.

There are no hard-and-fast rules about perspective; as it turns out, there’s
really quite a large range of usage. Some tools automatically turn source code
into the UML diagrams, treating the UML as an alternative view of the source.

Executable UML does not use the full UML standard; many constructs
of UML are considered to be unnecessary and are therefore not used. As a
result, Executable UML is simpler than full UML.

All this sounds good, but how realistic is it? In my view, there are two
issues here. First is the question of the tools: whether they are mature
enough to do the job. This is something that changes over time; certainly,
as I write this, they aren’t widely used, and I haven’t seen much of them in
action.

A more fundamental issue is the whole notion of the UML as a pro-
gramming language. In my view, it’s worth using the UML as a program-
ming language only if it results in something that’s significantly more
productive than using another programming language. I’m not convinced
that it is, based on various graphical development environments I’ve
worked with in the past. Even if it is more productive, it still needs to get a
critical mass of users for it to make the mainstream. That’s a big hurdle in
itself. Like many old Smalltalkers, I consider Smalltalk to be much more
productive than current mainstream languages. But as Smalltalk is now
only a niche language, I don’t see many projects using it. To avoid Small-
talk’s fate, the UML has to be luckier, even if it is superior.

6 CHAPTER 1 INTRODUCTION

That’s very much a software perspective. If you use UML diagrams to try and
understand the various meanings of the terms asset pool with a bunch of
accountants, you are in a much more conceptual frame of mind.

In previous editions of this book, I split the software perspective into specifi-
cation (interface) and implementation. In practice, I found that it was too hard
to draw a precise line between the two, so I feel that the distinction is no longer
worth making a fuss about. However, I’m always inclined to emphasize inter-
face rather than implementation in my diagrams.

These different ways of using the UML lead to a host of arguments about
what UML diagrams mean and what their relationship is to the rest of the
world. In particular, it affects the relationship between the UML and source
code. Some people hold the view that the UML should be used to create a
design that is independent of the programming language that’s used for imple-
mentation. Others believe that language-independent design is an oxymoron,
with a strong emphasis on the moron.

Another difference in viewpoints is what the essence of the UML is. In my
view, most users of the UML, particularly sketchers, see the essence of the UML
to be the diagrams. However, the creators of the UML see the diagrams as sec-
ondary; the essence of the UML is the meta-model. Diagrams are simply a pre-
sentation of the meta-model. This view also makes sense to blueprinters and
UML programming language users.

So whenever you read anything involving the UML, it’s important to under-
stand the point of view of the author. Only then can you make sense of the
often fierce arguments that the UML encourages.

Having said all that, I need to make my biases clear. Almost all the time, my
use of the UML is as sketches. I find the UML sketches useful with forward and
reverse engineering and in both conceptual and software perspectives.

I’m not a fan of detailed forward-engineered blueprints; I believe that it’s too
difficult to do well and slows down a development effort. Blueprinting to a level
of subsystem interfaces is reasonable, but even then you should expect to
change those interfaces as developers implement the interactions across the
interface. The value of reverse-engineered blueprints is dependent on how the
tool works. If it’s used as a dynamic browser, it can be very helpful; if it gener-
ates a large document, all it does is kill trees.

I see the UML as programming language as a nice idea but doubt that it will
ever see significant usage. I’m not convinced that graphical forms are more pro-
ductive than textual forms for most programming tasks and that even if they
are, it’s very difficult for a language to be widely accepted.

As a result of my biases, this book focuses much more on using the UML for
sketching. Fortunately, this makes sense for a brief guide. I can’t do justice to

HOW WE GOT TO THE UML 7

the UML in its other modes in a book this size, but a book this size makes a
good introduction to other books that can. So if you’re interested in the UML
in its other modes, I’d suggest that you treat this book as an introduction and
move on to other books as you need them. If you’re interested only in sketches,
this book may well be all you need.

How We Got to the UML

I’ll admit, I’m a history buff. My favorite idea of light reading is a good history
book. But I also know that it’s not everybody’s idea of fun. I talk about history
here because I think that in many ways, it’s hard to understand where the UML
is without understanding the history of how it got here.

In the 1980s, objects began to move away from the research labs and took
their first steps toward the “real” world. Smalltalk stabilized into a platform
that people could use, and C++ was born. At that time, various people started
thinking about object-oriented graphical design languages.

The key books about object-oriented graphical modeling languages appeared
between 1988 and 1992. Leading figures included Grady Booch [Booch,
OOAD]; Peter Coad [Coad, OOA], [Coad, OOD]; Ivar Jacobson (Objectory)
[Jacobson, OOSE]; Jim Odell [Odell]; Jim Rumbaugh (OMT) [Rumbaugh,
insights], [Rumbaugh, OMT]; Sally Shlaer and Steve Mellor [Shlaer and Mellor,
data], [Shlaer and Mellor, states]; and Rebecca Wirfs-Brock (Responsibility
Driven Design) [Wirfs-Brock].

Each of those authors was now informally leading a group of practitioners
who liked those ideas. All these methods were very similar, yet they contained a
number of often annoying minor differences among them. The same basic con-
cepts would appear in very different notations, which caused confusion to my
clients.

During that heady time, standardization was as talked about as it was
ignored. A team from the OMG tried to look at standardization but got only an
open letter of protest from all the key methodologists. (This reminds me of an
old joke. Question: What is the difference between a methodologist and a ter-
rorist? Answer: You can negotiate with a terrorist.)

The cataclysmic event that first initiated the UML was when Jim Rum-
baugh left GE to join Grady Booch at Rational (now a part of IBM). The
Booch/Rumbaugh alliance was seen from the beginning as one that could get
a critical mass of market share. Grady and Jim proclaimed that “the methods
war is over—we won,” basically declaring that they were going to achieve

8 CHAPTER 1 INTRODUCTION

standardization “the Microsoft way.” A number of other methodologists sug-
gested forming an Anti-Booch Coalition.

By OOPSLA ’95, Grady and Jim had prepared their first public description
of their merged method: version 0.8 of the Unified Method documentation.
Even more significant, they announced that Rational Software had bought
Objectory and that therefore, Ivar Jacobson would be joining the Unified team.
Rational held a well-attended party to celebrate the release of the 0.8 draft.
(The highlight of the party was the first public display of Jim Rumbaugh’s sing-
ing; we all hope it’s also the last.)

The next year saw a more open process emerge. The OMG, which had
mostly stood on the sidelines, now took an active role. Rational had to incorpo-
rate Ivar’s ideas and also spent time with other partners. More important, the
OMG decided to take a major role.

At this point, it’s important to realize why the OMG got involved. Method-
ologists, like book authors, like to think that they are important. But I don’t
think that the screams of book authors would even be heard by the OMG.
What got the OMG involved were the screams of tools vendors, all of which
were frightened that a standard controlled by Rational would give Rational
tools an unfair competitive advantage. As a result, the vendors energized the
OMG to do something about it, under the banner of CASE tool interoperabil-
ity. This banner was important, as the OMG was all about interoperability. The
idea was to create a UML that would allow CASE tools to freely exchange
models.

Mary Loomis and Jim Odell chaired the initial task force. Odell made it clear
that he was prepared to give up his method to a standard, but he did not want a
Rational-imposed standard. In January 1997, various organizations submitted
proposals for a methods standard to facilitate the interchange of models. Ratio-
nal collaborated with a number of other organizations and released version 1.0
of the UML documentation as their proposal, the first animal to answer to the
name Unified Modeling Language.

Then followed a short period of arm twisting while the various proposals
were merged. The OMG adopted the resulting 1.1 as an official OMG stan-
dard. Some revisions were made later on. Revision 1.2 was entirely cosmetic.
Revision 1.3 was more significant. Revision 1.4 added a number of detailed
concepts around components and profiles. Revision 1.5 added action semantics.

When people talk about the UML, they credit mainly Grady Booch, Ivar
Jacobson, and Jim Rumbaugh as its creators. They are generally referred to as
the Three Amigos, although wags like to drop the first syllable of the second
word. Although they are most credited with the UML, I think it somewhat
unfair to give them the dominant credit. The UML notation was first formed in

NOTATIONS AND META-MODELS 9

the Booch/Rumbaugh Unified Method. Since then, much of the work has been
led by OMG committees. During these later stages, Jim Rumbaugh is the only
one of the three to have made a heavy commitment. My view is that it’s these
members of the UML committee process that deserve the principal credit for
the UML.

Notations and Meta-Models

The UML, in its current state, defines a notation and a meta-model. The nota-
tion is the graphical stuff you see in models; it is the graphical syntax of the
modeling language. For instance, class diagram notation defines how items and
concepts, such as class, association, and multiplicity, are represented.

Of course, this leads to the question of what exactly is meant by an associa-
tion or multiplicity or even a class. Common usage suggests some informal def-
initions, but many people want more rigor than that.

The idea of rigorous specification and design languages is most prevalent
in the field of formal methods. In such techniques, designs and specifications
are represented using some derivative of predicate calculus. Such definitions are
mathematically rigorous and allow no ambiguity. However, the value of these
definitions is by no means universal. Even if you can prove that a program sat-
isfies a mathematical specification, there is no way to prove that the mathemat-
ical specification meets the real requirements of the system.

Most graphical modeling languages have very little rigor; their notation
appeals to intuition rather than to formal definition. On the whole, this does
not seem to have done much harm. These methods may be informal, but many
people still find them useful—and it is usefulness that counts.

However, methodologists are looking for ways to improve the rigor of
methods without sacrificing their usefulness. One way to do this is to define a
meta-model: a diagram, usually a class diagram, that defines the concepts of
the language.

Figure 1.1, a small piece of the UML meta-model, shows the relationship
among features. (The extract is there to give you a flavor of what meta-models
are like. I’m not even going to try to explain it.)

How much does the meta-model affect a user of the modeling notation? The
answer depends mostly on the mode of usage. A sketcher usually doesn’t care
too much; a blueprinter should care rather more. It’s vitally important to those
who use the UML as a programming language, as it defines the abstract syntax
of that language.

10 CHAPTER 1 INTRODUCTION

Many of the people who are involved in the ongoing development of the
UML are interested primarily in the meta-model, particularly as this is impor-
tant to the usage of the UML as a programming language. Notational issues
often run second place, which is important to bear in mind if you ever try to get
familiar with the standards documents themselves.

As you get deeper into the more detailed usage of the UML, you realize that
you need much more than the graphical notation. This is why UML tools are so
complex.

I am not rigorous in this book. I prefer the traditional methods path and
appeal mainly to your intuition. That’s natural for a small book like this written
by an author who’s inclined mostly to a sketch usage. If you want more rigor,
you should turn to more detailed tomes.

UML Diagrams

UML 2 describes 13 official diagram types listed in Table 1.1 and classified as
indicated on Figure 1.2. Although these diagram types are the way many people

*

0..1

{ordered}

Behavioral
Feature

Parameter

Structural
Feature

Feature

Figure 1.1 A small piece of the UML meta-model

UML DIAGRAMS 11

approach the UML and how I’ve organized this book, the UML’s authors do
not see diagrams as the central part of the UML. As a result, the diagram types
are not particularly rigid. Often, you can legally use elements from one diagram
type on another diagram. The UML standard indicates that certain elements are
typically drawn on certain diagram types, but this is not a prescription.

Table 1.1 Official Diagram Types of the UML

Diagram
Book
Chapters Purpose Lineage

Activity 11 Procedural and parallel
behavior

In UML 1

Class 3, 5 Class, features, and
relationships

In UML 1

Communication 12 Interaction between objects;
emphasis on links

UML 1 collaboration
diagram

Component 14 Structure and connections of
components

In UML 1

Composite
structure

13 Runtime decomposition of a
class

New to UML 2

Deployment 8 Deployment of artifacts to
nodes

In UML 1

Interaction
overview

16 Mix of sequence and activity
diagram

New to UML 2

Object 6 Example configurations of
instances

Unofficially in UML 1

Package 7 Compile-time hierarchic
structure

Unofficially in UML 1

Sequence 4 Interaction between objects;
emphasis on sequence

In UML 1

State machine 10 How events change an object
over its life

In UML 1

Timing 17 Interaction between objects;
emphasis on timing

New to UML 2

Use case 9 How users interact with a
system

In UML 1

12 CHAPTER 1 INTRODUCTION

Diagram

Class Diagram

Component
Diagram

Composite
Structure
Diagram

Deployment
Diagram

Object Diagram

Package
Diagram

Interaction
Diagram

Activity
Diagram

Use Case
Diagram

State Machine
Diagram

Sequence
Diagram

Communication
Diagram

Interaction
Overview
Diagram

Timing Diagram

Structure
Diagram

Behavior
Diagram

Figure 1.2 Classification of UML diagram types

WHAT IS LEGAL UML? 13

What Is Legal UML?

At first blush, this should be a simple question to answer: Legal UML is what is
defined as well formed in the specification. In practice, however, the answer is a
bit more complicated.

An important part of this question is whether the UML has descriptive or
prescriptive rules. A language with prescriptive rules is controlled by an official
body that states what is or isn’t legal in the language and what meaning you
give to utterances in that language. A language with descriptive rules is one in
which you understand its rules by looking at how people use the language in
practice. Programming languages tend to have prescriptive rules set by a stan-
dards committee or dominant vendor, while natural languages, such as English,
tend to have descriptive rules whose meaning is set by convention.

UML is quite a precise language, so you might expect it to have prescriptive
rules. But UML is often considered to be the software equivalent of the blueprints
in other engineering disciplines, and these blueprints are not prescriptive nota-
tions. No committee says what the legal symbols are on a structural engineering
drawing; the notation has been accepted by convention, similarly to a natural lan-
guage. Simply having a standards body doesn’t do the trick either, because people
in the field may not follow everything the standards body says; just ask the
French about the Académie Française. In addition, the UML is so complex that
the standard is often open to multiple interpretations. Even the UML leaders who
reviewed this book would disagree on interpretation of the UML standard.

This issue is important both for me writing this book and for you using the
UML. If you want to understand a UML diagram, it’s important to realize that
understanding the UML standard is not the whole picture. People do adopt
conventions, both in the industry widely and within a particular project. As a
result, although the UML standard can be the primary source of information on
the UML, it can’t be the only one.

My attitude is that, for most people, the UML has descriptive rules. The
UML standard is the biggest single influence on what UML means, but it isn’t
the only one. I think that this will become particularly true with UML 2, which
introduces some notational conventions that conflict with either UML 1’s defi-
nition or the conventional usage of UML, as well as adds yet more complexity
to the UML. In this book, therefore, I’m trying to summarize the UML as I find
it: both the standards and the conventional usage. When I have to make a dis-
tinction in this book, I’ll use the term conventional use to indicate something
that isn’t in the standard but that I think is widely used. For something that
conforms to the standard, I’ll use the terms standard or normative. (Normative

14 CHAPTER 1 INTRODUCTION

is the term standards people use to mean a statement that you must conform to
be valid in the standard. So non-normative UML is a fancy way of saying that
something is strictly illegal according to the UML standard.)

When you are looking at a UML diagram, you should bear in mind that a
general principle in the UML is that any information may be suppressed for a
particular diagram. This suppression can occur either generally—hide all
attributes—or specifically—don’t show these three classes. In a diagram, there-
fore, you can never infer anything by its absence. If a multiplicity is missing,
you cannot infer what value it might be. Even if the UML meta-model has a
default, such as [1] for attributes, if you don’t see the information on the dia-
gram, it may be because it’s the default or because it’s suppressed.

Having said that, there are some general conventions, such as multivalued
properties being sets. In the text, I’ll point out these default conventions.

It’s important to not put too much emphasis on having legal UML if you’re a
sketcher or blueprinter. It’s more important to have a good design for your sys-
tem, and I would rather have a good design in illegal UML than a legal but
poor design. Obviously, good and legal is best, but you’re better off putting
your energy into having a good design than worrying about the arcana of UML.
(Of course, you have to be legal in UML as programming language, or your
program won’t run properly!)

The Meaning of UML

One of the awkward issues about the UML is that, although the specification
describes in great detail what well-formed UML is, it doesn’t have much to say
about what the UML means outside of the rarefied world of the UML meta-
model. No formal definition exists of how the UML maps to any particular pro-
gramming language. You cannot look at a UML diagram and say exactly what
the equivalent code would look like. However, you can get a rough idea of what
the code would look like. In practice, that’s enough to be useful. Development
teams often form their local conventions for these, and you’ll need to be famil-
iar with the ones in use.

UML Is Not Enough

Although the UML provides quite a considerable body of various diagrams that
help to define an application, it’s by no means a complete list of all the useful

UML IS NOT ENOUGH 15

diagrams that you might want to use. In many places, different diagrams can be
useful, and you shouldn’t hesitate to use a non-UML diagram if no UML dia-
gram suits your purpose.

Figure 1.3, a screen flow diagram, shows the various screens on a user inter-
face and how you move between them. I’ve seen and used these screen flow dia-
grams for many years. I’ve never seen more than a very rough definition of
what they mean; there isn’t anything like it in the UML, yet I’ve found it a very
useful diagram.

Table 1.2 shows another favorite: the decision table. Decision tables are a
good way to show complicated logical conditions. You can do this with an
activity diagram, but once you get beyond simple cases, the table is both more
compact and more clear. Again, many forms of decision tables are out there.
Table 1.2 divides the table into two sections: conditions above the double line
and consequences below it. Each column shows how a particular combination
of conditions leads to a particular set of consequences.

WelcomeVisitors

RecentChanges

SomeWikiPage

Edit PageVisual Tour

Find Page

for recently changed pages

screen

navigation

!
non-

normative

submit search

save button

Figure 1.3 An informal screen flow diagram for part of the wiki (http://c2.com/cgi/wiki)

../../../../../c2.com/cgi/wiki

16 CHAPTER 1 INTRODUCTION

You’ll run into various kinds of these things in various books. Don’t hesitate
to try out techniques that seem appropriate for your project. If they work well,
use them. If not, discard them. (This is, of course, the same advice as for UML
diagrams.)

Where to Start with the UML

Nobody, not even the creators of the UML, understand or use all of it. Most
people use a small subset of the UML and work with that. You have to find the
subset of the UML that works for you and your colleagues.

If you are starting out, I suggest that you concentrate first on the basic forms
of class diagrams and sequence diagrams. These are the most common and, in
my view, the most useful diagram types.

Once you’ve got the hang of those, you can start using some of the more
advanced class diagram notation and take a look at the other diagrams types.
Experiment with the diagrams and see how helpful they are to you. Don’t be
afraid to drop any that don’t seem to be useful to your work.

Where to Find Out More

This book is not a complete and definitive reference to the UML, let alone OO
analysis and design. A lot of words are out there and a lot of worthwhile things
to read. As I discuss the individual topics, I also mention other books you
should go to for more in-depth information there. Here are some general books
on the UML and object-oriented design.

As with all book recommendations, you may need to check which version of
the UML they are written for. As of June 2003, no published book uses UML 2.0,
which is hardly surprising, as the ink is barely dry on the standard. The books I

Table 1.2 A Decision Table

Premium customer X X Y Y N N

Priority order Y N Y N Y N

International order Y Y N N N N

Fee $150 $100 $70 $50 $80 $60

Alert rep • • •

WHERE TO FIND OUT MORE 17

suggest are good books, but I can’t tell whether or when they will be updated to
the UML 2 standard.

If you are new to objects, I recommend my current favorite introductory
book: [Larman]. The author’s strong responsibility-driven approach to design is
worth following.

For the conclusive word on the UML, you should look to the official stan-
dards documents; but remember, they are written for consenting methodolo-
gists in the privacy of their own cubicles. For a much more digestible version of
the standard, take a look at [Rumbaugh, UML Reference].

For more detailed advice on object-oriented design, you’ll learn many good
things from [Martin].

I also suggest that you read books on patterns for material that will take you
beyond the basics. Now that the methods war is over, patterns (page 27) are
where most of the interesting material about analysis and design appears.

This page intentionally left blank

19

Chapter 2

Development Process

As I’ve already mentioned, the UML grew out of a bunch of OO analysis and
design methods. To some extent, all of them mixed a graphical modeling lan-
guage with a process that described how to go about developing software.

Interestingly, as the UML was formed, the various players discovered that
although they could agree on a modeling language, they most certainly could
not agree on a process. As a result, they agreed to leave any agreement on pro-
cess until later and to confine the UML to being a modeling language.

The title of this book is UML Distilled, so I could have safely ignored pro-
cess. However, I don’t believe that modeling techniques make any sense without
knowing how they fit into a process. The way you use the UML depends a lot
on the style of process you use.

As a result, I think that it’s important to talk about process first so that you
can see the context for using the UML. I’m not going to go into great detail on
any particular process; I simply want to give you enough information to see this
context and pointers to where you can find out more.

When you hear people discuss the UML, you often hear them talk about the
Rational Unified Process (RUP). RUP is one process—or, more strictly, a pro-
cess framework—that you can use with the UML. But other than the common
involvement of various people from Rational and the name “unified,” it doesn’t
have any special relationship to the UML. The UML can be used with any pro-
cess. RUP is a popular approach and is discussed on page 25.

Iterative and Waterfall Processes

One of the biggest debates about process is that between waterfall and iterative
styles. The terms often get misused, particularly as iterative is seen as fashion-
able, while the waterfall process seems to wear plaid trousers. As a result, many
projects claim to do iterative development but are really doing waterfall.

20 CHAPTER 2 DEVELOPMENT PROCESS

The essential difference between the two is how you break up a project into
smaller chunks. If you have a project that you think will take a year, few people
are comfortable telling the team to go away for a year and to come back when
done. Some breakdown is needed so that people can approach the problem and
track progress.

The waterfall style breaks down a project based on activity. To build software,
you have to do certain activities: requirements analysis, design, coding, and test-
ing. Our 1-year project might thus have a 2-month analysis phase, followed by
a 4-month design phase, followed by a 3-month coding phase, followed by a
3-month testing phase.

The iterative style breaks down a project by subsets of functionality. You
might take a year and break it into 3-month iterations. In the first iteration,
you’d take a quarter of the requirements and do the complete software life cycle
for that quarter: analysis, design, code, and test. At the end of the first iteration,
you’d have a system that does a quarter of the needed functionality. Then you’d
do a second iteration so that at the end of 6 months, you’d have a system that
does half the functionality.

Of course, the above is a simplified description, but it is the essence of the
difference. In practice, of course, some impurities leak into the process.

With waterfall development, there is usually some form of formal handoff
between each phase, but there are often backflows. During coding, something
may come up that causes you to revisit the analysis and design. You certainly
should not assume that all design is finished when coding begins. It’s inevitable
that analysis and design decisions will have to be revisited in later phases.
However, these backflows are exceptions and should be minimized as much as
possible.

With iteration, you usually see some form of exploration activity before the
true iterations begin. At the very least, this will get a high-level view of the
requirements: at least enough to break the requirements down into the iterations
that will follow. Some high-level design decisions may occur during exploration
too. At the other end, although each iteration should produce production-ready
integrated software, it often doesn’t quite get to that point and needs a stabiliza-
tion period to iron out the last bugs. Also, some activities, such as user training,
are left to the end.

You may well not put the system into production at the end of each iteration,
but the system should be of production quality. Often, however, you can put the
system into production at regular intervals; this is good because you get value
from the system earlier and you get better-quality feedback. In this situation,
you often hear of a project having multiple releases, each of which is broken
down into several iterations.

ITERATIVE AND WATERFALL PROCESSES 21

Iterative development has come under many names: incremental, spiral, evo-
lutionary, and jacuzzi spring to mind. Various people make distinctions among
them, but the distinctions are neither widely agreed on nor that important com-
pared to the iterative/waterfall dichotomy.

You can have hybrid approaches. [McConnell] describes the staged delivery
life cycle whereby analysis and high-level design are done first, in a waterfall
style, and then the coding and testing are divided up into iterations. Such a
project might have 4 months of analysis and design followed by four 2-month
iterative builds of the system.

Most writers on software process in the past few years, especially in the
object-oriented community, dislike the waterfall approach. Of the many rea-
sons for this, the most fundamental is that it’s very difficult to tell whether the
project is truly on track with a waterfall process. It’s too easy to declare victory
with early phases and hide a schedule slip. Usually, the only way you can really
tell whether you are on track is to produce tested, integrated software. By doing
this repeatedly, an iterative style gives you better warning if something is going
awry.

For that reason alone, I strongly recommend that projects do not use a pure
waterfall approach. You should at least use staged delivery, if not a more pure
iterative technique.

The OO community has long been in favor of iterative development, and it’s
safe to say that pretty much everyone involved in building the UML is in favor
of at least some form of iterative development. My sense of industrial practice is
that waterfall development is still the more common approach, however. One
reason for this is what I refer to as pseudoiterative development: People claim
to be doing iterative development but are in fact doing waterfall. Common
symptoms of this are:

• “We are doing one analysis iteration followed by two design iterations. . . .”

• “This iteration’s code is very buggy, but we’ll clean it up at the end.”

It is particularly important that each iteration produces tested, integrated
code that is as close to production quality as possible. Testing and integration
are the hardest activities to estimate, so it’s important not to have an open-
ended activity like that at the end of the project. The test should be that any
iteration that’s not scheduled to be released could be released without substan-
tial extra development work.

A common technique with iterations is to use time boxing. This forces an iter-
ation to be a fixed length of time. If it appears that you can’t build all you
intended to build during an iteration, you must decide to slip some functionality

22 CHAPTER 2 DEVELOPMENT PROCESS

from the iteration; you must not slip the date of the iteration. Most projects that
use iterative development use the same iteration length throughout the project;
that way, you get a regular rhythm of builds.

I like time boxing because people usually have difficulty slipping functional-
ity. By practicing slipping function regularly, they are in a better position to
make an intelligent choice at a big release between slipping a date and slipping
function. Slipping function during iterations is also effective at helping people
learn what the real requirements priorities are.

One of the most common concerns about iterative development is the issue
of rework. Iterative development explicitly assumes that you will be reworking
and deleting existing code during the later iterations of a project. In many
domains, such as manufacturing, rework is seen as a waste. But software isn’t
like manufacturing; as a result, it often is more efficient to rework existing code
than to patch around code that was poorly designed. A number of technical
practices can greatly help make rework be more efficient.

• Automated regression tests help by allowing you to quickly detect any
defects that may have been introduced when you are changing things. The
xUnit family of testing frameworks is a particularly valuable tool for
building automated unit tests. Starting with the original JUnit http://
junit.org, there are now ports to almost every language imaginable (see
http://www.xprogramming.com/software.htm). A good rule of thumb is
that the size of your unit test code should be about the same size as your
production code.

• Refactoring is a disciplined technique for changing existing software
[Fowler, refactoring]. Refactoring works by using a series of small behavior-
preserving transformations to the code base. Many of these transforma-
tions can be automated (see http://www.refactoring.com).

• Continuous integration keeps a team in sync to avoid painful integration
cycles [Fowler and Foemmel]. At the heart of this lies a fully automated
build process that can be kicked off automatically whenever any member
of the team checks code into the code base. Developers are expected to
check in daily, so automated builds are done many times a day. The build
process includes running a large block of automated regression tests so
that any inconsistencies are caught quickly so they can be fixed easily.

All these technical practices have been popularized recently by Extreme Pro-
gramming [Beck], although they were used before and can, and should, be used
whether or not you use XP or any other agile process.

../../../../../junit.org/default.htm
../../../../../junit.org/default.htm
../../../../../www.xprogramming.com/software.htm
../../../../../www.refactoring.com/default.htm

PREDICTIVE AND ADAPTIVE PLANNING 23

Predictive and Adaptive Planning

One reason that the waterfall endures is the desire for predictability in software
development. Nothing is more frustrating than not having a clear idea how
much it will cost to build some software and how long it will take to build it.

A predictive approach looks to do work early in the project in order to yield
a greater understanding of what has to be done later. This way, you can reach a
point where the latter part of the project can be estimated with a reasonable
degree of accuracy. With predictive planning, a project has two stages. The first
stage comes up with plans and is difficult to predict, but the second stage is
much more predictable because the plans are in place.

This isn’t necessarily a black-and-white affair. As the project goes on, you
gradually get more predictability. And even once you have a predictive plan,
things will go wrong. You simply expect that the deviations become less signifi-
cant once a solid plan is in place.

However, there is a considerable debate about whether many software projects
can ever be predictable. At the heart of this question is requirements analysis.
One of the unique sources of complexity in software projects is the difficulty in
understanding the requirements for a software system. The majority of software
projects experience significant requirements churn: changes in requirements in
the later stages of the project. These changes shatter the foundations of a predic-
tive plan. You can combat these changes by freezing the requirements early on
and not permitting changes, but this runs the risk of delivering a system that no
longer meets the needs of its users.

This problem leads to two very different reactions. One route is to put more
effort into the requirements process itself. This way, you may get a more accu-
rate set of requirements, which will reduce the churn.

Another school contends that requirements churn is unavoidable, that it’s too
difficult for many projects to stabilize requirements sufficiently to use a predic-
tive plan. This may be either owing to the sheer difficulty of envisioning what
software can do or because market conditions force unpredictable changes. This
school of thought advocates adaptive planning, whereby predictivity is seen as
an illusion. Instead of fooling ourselves with illusory predictability, we should
face the reality of constant change and use a planning approach that treats
change as a constant in a software project. This change is controlled so that the
project delivers the best software it can; but although the project is controllable,
it is not predictable.

The difference between a predictive project and an adaptive project surfaces in
many ways that people talk about how the project goes. When people talk about

24 CHAPTER 2 DEVELOPMENT PROCESS

a project that’s doing well because it’s going according to plan, that’s a predictive
form of thinking. You can’t say “according to plan” in an adaptive environment,
because the plan is always changing. This doesn’t mean that adaptive projects
don’t plan; they usually plan a lot, but the plan is treated as a baseline to assess
the consequences of change rather than as a prediction of the future.

With a predictive plan, you can develop a fixed-price/fixed-scope contract.
Such a contract says exactly what should be built, how much it will cost, and
when it will be delivered. Such fixing isn’t possible with an adaptive plan. You
can fix a budget and a time for delivery, but you can’t fix what functionality will
be delivered. An adaptive contract assumes that the users will collaborate with
the development team to regularly reassess what functionality needs to be built
and will cancel the project if progress ends up being too slow. As such, an adap-
tive planning process can be fixed price/variable scope.

Naturally, the adaptive approach is less desirable, as anyone would prefer
greater predictability in a software project. However, predictability depends on
a precise, accurate, and stable set of requirements. If you cannot stabilize your
requirements, the predictive plan is based on sand and the chances are high that
the project goes off course. This leads to two important pieces of advice.

1. Don’t make a predictive plan until you have precise and accurate require-
ments and are confident that they won’t significantly change.

2. If you can’t get precise, accurate, and stable requirements, use an adaptive
planning style.

Predictivity and adaptivity feed into the choice of life cycle. An adaptive plan
absolutely requires an iterative process. Predictive planning can be done either
way, although it’s easier to see how it works with waterfall or a staged delivery
approach.

Agile Processes

In the past few years, there’s been a lot of interest in agile software processes.
Agile is an umbrella term that covers many processes that share a common set of
values and principles as defined by the Manifesto of Agile Software Development
(http://agileManifesto.org). Examples of these processes are Extreme Program-
ming (XP), Scrum, Feature Driven Development (FDD), Crystal, and DSDM
(Dynamic Systems Development Method).

In terms of our discussion, agile processes are strongly adaptive in their
nature. They are also very much people-oriented processes. Agile approaches

../../../../../agilemanifesto.org/default.htm

RATIONAL UNIFIED PROCESS 25

assume that the most important factor in a project’s success is the quality of the
people on the project and how well they work together in human terms. Which
process they use and which tools they use are strictly second-order effects.

Agile methods tend to use short, time-boxed iterations, most often of a month
or less. Because they don’t attach much weight to documents, agile approaches
disdain using the UML in blueprint mode. Most use the UML in sketch mode,
with a few advocating using it as a programming language.

Agile processes tend to be low in ceremony. A high-ceremony, or heavyweight,
process has a lot of documents and control points during the project. Agile pro-
cesses consider that ceremony makes it harder to make changes and works
against the grain of talented people. As a result, agile processes are often char-
acterized as lightweight. It’s important to realize that the lack of ceremony is a
consequence of adaptivity and people orientation rather than a fundamental
property.

Rational Unified Process

Although the Rational Unified Process (RUP) is independent of the UML, the
two are often talked about together. So I think it’s worth saying a few things
about it here.

Although RUP is called a process, it actually is a process framework, provid-
ing a vocabulary and loose structure to talk about processes. When you use RUP,
the first thing you need to do is choose a development case: the process you are
going to use in the project. Development cases can vary widely, so don’t assume
that your development case will look that much like any other development
case. Choosing a development case needs someone early on who is very familiar
with RUP: someone who can tailor RUP for a particular project’s needs. Alterna-
tively, there is a growing body of packaged development cases to start from.

Whatever the development case, RUP is essentially an iterative process. A
waterfall style isn’t compatible with the philosophy of RUP, although sadly it’s
not uncommon to run into projects that use a waterfall-style process and dress
it up in RUP’s clothes.

All RUP projects should follow four phases.

1. Inception makes an initial evaluation of a project. Typically in inception,
you decide whether to commit enough funds to do an elaboration phase.

2. Elaboration identifies the primary use cases of the project and builds soft-
ware in iterations in order to shake out the architecture of the system. At

26 CHAPTER 2 DEVELOPMENT PROCESS

the end of elaboration, you should have a good sense of the requirements
and a skeletal working system that acts as the seed of development. In par-
ticular, you should have found and resolved the major risks to the project.

3. Construction continues the building process, developing enough function-
ality to release.

4. Transition includes various late-stage activities that you don’t do iteratively.
These may include deployment into the data center, user training, and the
like.

There’s a fair amount of fuzziness between the phases, especially between
elaboration and construction. For some, the shift to construction is the point at
which you can move into a predictive planning mode. For others, it merely indi-
cates the point at which you have a broad vision of requirements and an archi-
tecture that you think is going to last the rest of the project.

Sometimes, RUP is referred to as the Unified Process (UP). This is usually
done by organizations that wish to use the terminology and overall style of RUP
without using the licensed products of Rational Software. You can think of
RUP as Rational’s product offering based on the UP, or you can think of RUP
and UP as the same thing. Either way, you’ll find people who agree with you.

Fitting a Process to a Project

Software projects differ greatly from one another. The way you go about soft-
ware development depends on many factors: the kind of system you’re building,
the technology you’re using, the size and distribution of the team, the nature of
the risks, the consequences of failure, the working styles of the team, and the
culture of the organization. As a result, you should never expect there to be a
one-size-fits-all process that will work for all projects.

Consequently, you always have to adapt a process to fit your particular envi-
ronment. One of the first things you need to do is look at your project and con-
sider which processes seem close to a fit. This should give you a short list of
processes to consider.

You should then consider what adaptations you need to make to fit them to
your project. You have to be somewhat careful with this. Many processes are
difficult to fully appreciate until you’ve worked with them. In these cases, it’s
often worth using the process out of the box for a couple of iterations until you
learn how it works. Then you can start modifying the process. If from the
beginning you are more familiar with how a process works, you can modify it

FITTING A PROCESS TO A PROJECT 27

Patterns

The UML tells you how to express an object-oriented design. Patterns
look, instead, at the results of the process: example designs.

Many people have commented that projects have problems because the
people involved were not aware of designs that are well known to those
with more experience. Patterns describe common ways of doing things
and are collected by people who spot repeating themes in designs. These
people take each theme and describe it so that other people can read the
pattern and see how to apply it.

Let’s look at an example. Say that you have some objects running in a
process on your desktop and that they need to communicate with other
objects running in another process. Perhaps this process is also on your
desktop; perhaps it resides elsewhere. You don’t want the objects in your
system to have to worry about finding other objects on the network or
executing remote procedure calls.

What you can do is create a proxy object within your local process for
the remote object. The proxy has the same interface as the remote object.
Your local objects talk to the proxy, using the usual in-process message
sends. The proxy then is responsible for passing any messages on to the
real object, wherever it might reside.

Proxies are a common technique used in networks and elsewhere. People
have a lot of experience using proxies, knowing how they can be used,
what advantages they can bring, their limitations, and how to implement
them. Methods books like this one don’t discuss this knowledge; all they
discuss is how you can diagram a proxy. Although this is useful, it is not
as useful as discussing the experience involving proxies.

In the early 1990s, some people began to capture this experience. They
formed a community interested in writing patterns. These people sponsor
conferences and have produced several books.

The most famous patterns book to emerge from this group is [Gang of
Four], which discusses 23 design patterns in detail. If you want to know
about proxies, this book spends ten pages on the subject, giving details
about how the objects work together, the benefits and limitations of the
pattern, common variations, and implementation tips.

A pattern is much more than a model. A pattern must also include the
reason why it is the way it is. It is often said that a pattern is a solution to
a problem. The pattern must identify the problem clearly, explain why

28 CHAPTER 2 DEVELOPMENT PROCESS

from the beginning. Remember that it’s usually easier to start with too little and
add things than it is to start with too much and take things away.

However confident you are with your process when you begin, it’s essential
to learn as you go along. Indeed, one of the great benefits of iterative develop-
ment is that it supports frequent process improvement.

At the end of each iteration, conduct an iteration retrospective, whereby the
team assembles to consider how things went and how they can be improved. A
couple of hours is plenty if your iterations are short. A good way to do this is to
make a list with three categories:

1. Keep: things that worked well that you want to ensure you continue to do

2. Problems: areas that aren’t working well

3. Try: changes to your process to improve it

You can start each iteration retrospective after the first by reviewing the
items from the previous session and seeing how things have changed. Don’t for-
get the list of things to keep; it’s important to keep track of things that are
working. If you don’t do that, you can lose a sense of perspective on the project
and potentially stop paying attention to winning practices.

At the end of a project or at a major release, you may want to consider a
more formal project retrospective that will last a couple of days; see http://
www.retrospectives.com/ and [Kerth] for more details. One of my biggest irri-

it solves the problem, and also explain the circumstances under which the
pattern works and doesn’t work.

Patterns are important because they are the next stage beyond under-
standing the basics of a language or a modeling technique. Patterns give
you a series of solutions and also show you what makes a good model and
how you go about constructing a model. Patterns teach by example.

When I started out, I wondered why I had to invent things from
scratch. Why didn’t I have handbooks to show me how to do common
things? The patterns community is trying to build these handbooks.

There are now many patterns books out there, and they vary greatly in
quality. My favorites are [Gang of Four], [POSA1], [POSA2], [Core J2EE
Patterns], [Pont], and with suitable immodesty [Fowler, AP] and [Fowler,
P of EAA]. You can also take a look at the patterns home page: http://
www.hillside.net/patterns.

../../../../../www.retrospectives.com/default.htm
../../../../../www.retrospectives.com/default.htm
../../../../../www.hillside.net/patterns
../../../../../www.hillside.net/patterns

FITTING THE UML INTO A PROCESS 29

tations is how organizations consistently fail to learn from their own experience
and end up making expensive mistakes time and time again.

Fitting the UML into a Process

When they look at graphical modeling languages, people usually think of them
in the context of a waterfall process. A waterfall process usually has documents
that act as the handoffs between analysis, design, and coding phases. Graphical
models can often form a major part of these documents. Indeed, many of the
structured methods from the 1970s and 1980s talk a lot about analysis and
design models like this.

Whether or not you use a waterfall approach, you still do the activities of anal-
ysis, design, coding, and testing. You can run an iterative project with 1-week
iterations, with each week a miniwaterfall.

Using the UML doesn’t necessarily imply developing documents or feeding a
complex CASE tool. Many people draw UML diagrams on whiteboards only
during a meeting to help communicate their ideas.

Requirements Analysis

The activity of requirements analysis involves trying to figure out what the
users and customers of a software effort want the system to do. A number of
UML techniques can come in handy here:

• Use cases, which describe how people interact with the system.

• A class diagram drawn from the conceptual perspective, which can be a
good way of building up a rigorous vocabulary of the domain.

• An activity diagram, which can show the work flow of the organization,
showing how software and human activities interact. An activity diagram
can show the context for use cases and also the details of how a compli-
cated use case works.

• A state diagram, which can be useful if a concept has an interesting life
cycle, with various states and events that change that state.

When working in requirements analysis, remember that the most important
thing is communication with your users and customers. Usually, they are not
software people and will be unfamiliar with the UML or any other technique.

30 CHAPTER 2 DEVELOPMENT PROCESS

Even so, I’ve had success using these techniques with nontechnical people. To
do this, remember that it’s important to keep the notation to a minimum. Don’t
introduce anything that is specific to the software implementation.

Be prepared to break the rules of the UML at any time if it helps you com-
municate better. The biggest risk with using the UML in analysis is that you
draw diagrams that the domain experts don’t fully understand. A diagram that
isn’t understood by the people who know the domain is worse than useless; all
it does is breed a false sense of confidence for the development team.

Design

When you are doing design, you can get more technical with your diagrams.
You can use more notation and be more precise about your notation. Some use-
ful techniques are

• Class diagrams from a software perspective. These show the classes in the
software and how they interrelate.

• Sequence diagrams for common scenarios. A valuable approach is to
pick the most important and interesting scenarios from the use cases and
use CRC cards or sequence diagrams to figure out what happens in the
software.

• Package diagrams to show the large-scale organization of the software.

• State diagrams for classes with complex life histories.

• Deployment diagrams to show the physical layout of the software.

Many of these same techniques can be used to document software once it’s
been written. This may help people find their way around the software if they
have to work on it and are not familiar with the code.

With a waterfall life cycle, you would do these diagrams and activities as
part of the phases. The end-of-phase documents usually include the appropriate
UML diagrams for that activity. A waterfall style usually implies that the UML
is used as a blueprint.

In an iterative style, the UML diagrams can be used in either a blueprint or a
sketch style. With a blueprint, the analysis diagrams will usually be built in the
iteration prior to the one that builds the functionality. Each iteration doesn’t
start from scratch; rather, it modifies the existing body of documents, highlight-
ing the changes in the new iteration.

Blueprint designs are usually done early in the iteration and may be done in
pieces for different bits of functionality that are targeted for the iteration.

FITTING THE UML INTO A PROCESS 31

Again, iteration implies making changes to an existing model rather than build-
ing a new model each time.

Using the UML in sketch mode implies a more fluid process. One approach
is to spend a couple of days at the beginning of an iteration, sketching out the
design for that iteration. You can also do short design sessions at any point dur-
ing the iteration, setting up a quick meeting for half an hour whenever a devel-
oper starts to tackle a nontrivial function.

With a blueprint, you expect the code implementation to follow the dia-
grams. A change from the blueprint is a deviation that needs review from the
designers who did the blueprint. A sketch is usually treated more as a first cut at
the design; if, during coding, people find that the sketch isn’t exactly right, they
should feel free to change the design. The implementors have to use their judg-
ment as to whether the change needs a wider discussion to understand the full
ramifications.

One of my concerns with blueprints is my own observation that it’s very
hard to get them right, even for a good designer. I often find that my own
designs do not survive contact with coding intact. I still find UML sketches use-
ful, but I don’t find that they can be treated as absolutes.

In both modes, it makes sense to explore a number of design alternatives. It’s
usually best to explore alternatives in sketch mode so that you can quickly gen-
erate and change the alternatives. Once you pick a design to run with, you can
either use that sketch or detail it into a blueprint.

Documentation

Once you have built the software, you can use the UML to help document what
you have done. For this, I find UML diagrams useful for getting an overall
understanding of a system. In doing this, however, I should stress that I do not
believe in producing detailed diagrams of the whole system. To quote Ward
Cunningham [Cunningham]:

Carefully selected and well-written memos can easily substitute for tradi-
tional comprehensive design documentation. The latter rarely shines
except in isolated spots. Elevate those spots . . . and forget about the rest.
(p. 384)

I believe that detailed documentation should be generated from the code—
like, for instance, JavaDoc. You should write additional documentation to high-
light important concepts. Think of these as comprising a first step for the reader
before he or she goes into the code-based details. I like to structure these as prose
documents, short enough to read over a cup of coffee, using UML diagrams to

32 CHAPTER 2 DEVELOPMENT PROCESS

help illustrate the discussion. I prefer the diagrams as sketches that highlight the
most important parts of the system. Obviously, the writer of the document needs
to decide what is important and what isn’t, but the writer is much better
equipped than the reader to do that.

A package diagram makes a good logical road map of the system. This dia-
gram helps me understand the logical pieces of the system and see the depen-
dencies and keep them under control. A deployment diagram (see Chapter 8),
which shows the high-level physical picture, may also prove useful at this stage.

Within each package, I like to see a class diagram. I don’t show every opera-
tion on every class. I show only the important features that help me understand
what is in there. This class diagram acts as a graphical table of contents.

The class diagram should be supported by a handful of interaction diagrams
that show the most important interactions in the system. Again, selectivity is
important here; remember that, in this kind of document, comprehensiveness is
the enemy of comprehensibility.

If a class has complex life-cycle behavior, I draw a state machine diagram
(see Chapter 10) to describe it. I do this only if the behavior is sufficiently com-
plex, which I find doesn’t happen often.

I’ll often include some important code, written in a literate program style. If
a particularly complex algorithm is involved, I’ll consider using an activity dia-
gram (see Chapter 11) but only if it gives me more understanding than the code
alone.

If I find concepts that are coming up repeatedly, I use patterns (page 27) to
capture the basic ideas.

One of the most important things to document is the design alternatives you
didn’t take and why you didn’t do them. That’s often the most forgotten but
most useful piece of external documentation you can provide.

Understanding Legacy Code

The UML can help you figure out a gnarly bunch of unfamiliar code in a couple
of ways. Building a sketch of key facts can act as a graphical note-taking mech-
anism that helps you capture important information as you learn about it.
Sketches of key classes in a package and their key interactions can help clarify
what’s going on.

With modern tools, you can generate detailed diagrams for key parts of a
system. Don’t use these tools to generate big paper reports; instead, use them to
drill into key areas as you are exploring the code itself. A particularly nice capa-
bility is that of generating a sequence diagram to see how multiple objects col-
laborate in handling a complex method.

WHERE TO FIND OUT MORE 33

Choosing a Development Process

I’m strongly in favor of iterative development processes. As I’ve said in this
book before: You should use iterative development only on projects that you
want to succeed.

Perhaps that’s a bit glib, but as I get older, I get more aggressive about using
iterative development. Done well, it is an essential technique, one you can use
to expose risk early and to obtain better control over development. It is not the
same as having no management, although to be fair, I should point out that
some have used it that way. It does need to be well planned. But it is a solid
approach, and every OO development book encourages using it—for good
reason.

You should not be surprised to hear that as one the authors of the Manifesto
for Agile Software Development, I’m very much a fan of agile approaches. I’ve
also had a lot of positive experiences with Extreme Programming, and certainly
you should consider its practices very seriously.

Where to Find Out More

Books on software process have always been common, and the rise of agile soft-
ware development has led to many new books. Overall, my favorite book on
process in general is [McConnell]. He gives a broad and practical coverage of
many of the issues involved in software development and a long list of useful
practices.

From the agile community, [Cockburn, agile] and [Highsmith] provide a
good overview. For a lot of good advice about applying the UML in an agile
way, see [Ambler].

One of the most popular agile methods is Extreme Programming (XP),
which you can delve into via such Web sites as http://xprogramming.com and
http://www.extremeprogramming.org. XP has spawned many books, which is
why I now refer to it as the formerly lightweight methodology. The usual start-
ing point is [Beck].

Although it’s written for XP, [Beck and Fowler] gives more details on plan-
ning an iterative project. Much of this is also covered by the other XP books,
but if you’re interested only in the planning aspect, this would be a good choice.

For more information on the Rational Unified Process, my favorite introduc-
tion is [Kruchten].

../../../../../xprogramming.com/default.htm
../../../../../www.extremeprogramming.org/default.htm

This page intentionally left blank

35

Chapter 3

Class Diagrams:
The Essentials

If someone were to come up to you in a dark alley and say, “Psst, wanna see a
UML diagram?” that diagram would probably be a class diagram. The majority
of UML diagrams I see are class diagrams.

The class diagram is not only widely used but also subject to the greatest
range of modeling concepts. Although the basic elements are needed by every-
one, the advanced concepts are used less often. Therefore, I’ve broken my dis-
cussion of class diagrams into two parts: the essentials (this chapter) and the
advanced (Chapter 5).

A class diagram describes the types of objects in the system and the various
kinds of static relationships that exist among them. Class diagrams also show
the properties and operations of a class and the constraints that apply to the
way objects are connected. The UML uses the term feature as a general term
that covers properties and operations of a class.

Figure 3.1 shows a simple class model that would not surprise anyone who
has worked with order processing. The boxes in the diagram are classes, which
are divided into three compartments: the name of the class (in bold), its
attributes, and its operations. Figure 3.1 also shows two kinds of relationships
between classes: associations and generalizations.

Properties

Properties represent structural features of a class. As a first approximation, you
can think of properties as corresponding to fields in a class. The reality is rather
involved, as we shall see, but that’s a reasonable place to start.

36 CHAPTER 3 CLASS DIAGRAMS: THE ESSENTIALS

Properties are a single concept, but they appear in two quite distinct nota-
tions: attributes and associations. Although they look quite different on a dia-
gram, they are really the same thing.

Attributes

The attribute notation describes a property as a line of text within the class box
itself. The full form of an attribute is:

visibility name: type multiplicity = default {property-string}

1*

*

*

*

dispatch
close

dateReceived: Date[0..1]
isPrepaid: Boolean[1]
number: String [1]
price: Money

Order

quantity: Integer
price: Money

Order Line

lineItems {ordered}

Product

1

getCreditRating(): String

name [1]
address [0..1]

Customer

billForMonth(Integer)
remind()

contactName
creditRating
creditLimit

Corporate Customer

creditCardNumber

Personal Customer

Employee

0..1salesRep

1

{getCreditRating() == "poor"}

{if Order.customer.getCreditRating is
"poor" then Order.isPrepaid must be
true}

navigable

role name

attributes

operations

constraint

multiplicity

association

classgeneralization

Figure 3.1 A simple class diagram

PROPERTIES 37

An example of this is:

- name: String [1] = “Untitled” {readOnly}

Only the name is necessary.

• This visibility marker indicates whether the attribute is public (+) or pri-
vate (-); I’ll discuss other visibilities on page 83.

• The name of the attribute—how the class refers to the attribute—roughly
corresponds to the name of a field in a programming language.

• The type of the attribute indicates a restriction on what kind of object may
be placed in the attribute. You can think of this as the type of a field in a
programming language.

• I’ll explain multiplicity on page 38.

• The default value is the value for a newly created object if the attribute isn’t
specified during creation.

• The {property-string} allows you to indicate additional properties for the
attribute. In the example, I used {readOnly} to indicate that clients may not
modify the property. If this is missing, you can usually assume that the
attribute is modifiable. I’ll describe other property strings as we go.

Associations

The other way to notate a property is as an association. Much of the same
information that you can show on an attribute appears on an association. Fig-
ures 3.2 and 3.3 show the same properties represented in the two different
notations.

An association is a solid line between two classes, directed from the source
class to the target class. The name of the property goes at the target end of the

+ dateReceived: Date [0..1]
+ isPrepaid: Boolean [1]
+ lineItems: OrderLine [*] {ordered}

Order

Figure 3.2 Showing properties of an order as attributes

38 CHAPTER 3 CLASS DIAGRAMS: THE ESSENTIALS

association, together with its multiplicity. The target end of the association
links to the class that is the type of the property.

Although most of the same information appears in both notations, some
items are different. In particular, associations can show multiplicities at both
ends of the line.

With two notations for the same thing, the obvious question is, Why should
you use one or the other? In general, I tend to use attributes for small things,
such as dates or Booleans—in general, value types (page 73)—and associations
for more significant classes, such as customers and orders. I also tend to prefer
to use class boxes for classes that are significant for the diagram, which leads to
using associations, and attributes for things less important for that diagram.
The choice is much more about emphasis than about any underlying meaning.

Multiplicity

The multiplicity of a property is an indication of how many objects may fill the
property. The most common multiplicities you will see are

• 1 (An order must have exactly one customer.)

• 0..1 (A corporate customer may or may not have a single sales rep.)

• * (A customer need not place an Order and there is no upper limit to the
number of Orders a Customer may place—zero or more orders.)

More generally, multiplicities are defined with a lower bound and an upper
bound, such as 2..4 for players of a game of canasta. The lower bound may be

*

*

1
OrderDate

OrderLine

Boolean
+ dateReceived

0..1 + isPrepaid

 lineItems
{ordered}

1

target

source

Figure 3.3 Showing properties of an order as associations

PROGRAMMING INTERPRETATION OF PROPERTIES 39

any positive number or zero; the upper is any positive number or * (for unlim-
ited). If the lower and upper bounds are the same, you can use one number;
hence, 1 is equivalent to 1..1. Because it’s a common case, * is short for 0..*.

In attributes, you come across various terms that refer to the multiplicity.

• Optional implies a lower bound of 0.

• Mandatory implies a lower bound of 1 or possibly more.

• Single-valued implies an upper bound of 1.

• Multivalued implies an upper bound of more than 1: usually *.

If I have a multivalued property, I prefer to use a plural form for its name.
By default, the elements in a multivalued multiplicity form a set, so if you ask

a customer for its orders, they do not come back in any order. If the ordering of
the orders in association has meaning, you need to add {ordered} to the associa-
tion end. If you want to allow duplicates, add {nonunique}. (If you want to explic-
itly show the default, you can use {unordered} and {unique}.) You may also see
collection-oriented names, such as {bag} for unordered, nonunique.

UML 1 allowed discontinuous multiplicities, such as 2, 4 (meaning 2 or 4, as
in cars in the days before minivans). Discontinuous multiplicities weren’t very
common and UML 2 removed them.

The default multiplicity of an attribute is [1]. Although this is true in the
meta-model, you can’t assume that an attribute in a diagram that’s missing a
multiplicity has a value of [1], as the diagram may be suppressing the multiplic-
ity information. As a result, I prefer to explicitly state a [1] multiplicity if it’s
important.

Programming Interpretation of Properties

As with anything else in the UML, there’s no one way to interpret properties in
code. The most common software representation is that of a field or property of
your programming language. So the Order Line class from Figure 3.1 would
correspond to something like the following in Java:

public class OrderLine...
 private int quantity;
 private Money price;
 private Order order;
 private Product product

40 CHAPTER 3 CLASS DIAGRAMS: THE ESSENTIALS

In a language like C#, which has properties, it would correspond to:

public class OrderLine ...
 public int Quantity;
 public Money Price;
 public Order Order;
 public Product Product;

Note that an attribute typically corresponds to public properties in a lan-
guage that supports properties but to private fields in a language that does not.
In a language without properties, you may see the fields exposed through acces-
sor (getting and setting) methods. A read-only attribute will have no setting
method (with fields) or set action (for properties). Note that if you don’t give a
name for a property, it’s common to use the name of the target class.

Using private fields is a very implementation-focused interpretation of the
diagram. A more interface-oriented interpretation might instead concentrate on
the getting methods rather than the underlying data. In this case, we might see
the Order Line’s attributes corresponding to the following methods:

public class OrderLine...
 private int quantity;
 private Product product;
 public int getQuantity() {
 return quantity;
 }
 public void setQuantity(int quantity) {
 this.quantity = quantity;
 }
 public Money getPrice() {
 return product.getPrice().multiply(quantity);
 }

In this case, there is no data field for price; instead, it’s a computed value. But
as far as clients of the Order Line class are concerned, it looks the same as a
field. Clients can’t tell what is a field and what is computed. This information
hiding is the essence of encapsulation.

If an attribute is multivalued, this implies that the data concerned is a collec-
tion. So an Order class would refer to a collection of Order Lines. Because this
multiplicity is ordered, that collection must be ordered, (such as a List in Java or
an IList in .NET). If the collection is unordered, it should, strictly, have no mean-
ingful order and thus be implemented with a set, but most people implement
unordered attributes as lists as well. Some people use arrays, but the UML implies
an unlimited upper bound, so I almost always use a collection for data structure.

Multivalued properties yield a different kind of interface to single-valued
properties (in Java):

BIDIRECTIONAL ASSOCIATIONS 41

class Order {
 private Set lineItems = new HashSet();
 public Set getLineItems() {
 return Collections.unmodifiableSet(lineItems);
 }
 public void addLineItem (OrderItem arg) {
 lineItems.add (arg);
 }
 public void removeLineItem (OrderItem arg) {
 lineItems.remove(arg);
 }

In most cases, you don’t assign to a multivalued property; instead, you
update with add and remove methods. In order to control its Line Items prop-
erty, the order must control membership of that collection; as a result, it
shouldn’t pass out the naked collection. In this case, I used a protection proxy
to provide a read-only wrapper to the collection. You can also provide a nonup-
datable iterator or make a copy. It’s okay for clients to modify the member
objects, but the clients shouldn’t directly change the collection itself.

Because multivalued attributes imply collections, you almost never see col-
lection classes on a class diagram. You would show them only in very low level
implementation diagrams of collections themselves.

You should be very afraid of classes that are nothing but a collection of fields
and their accessors. Object-oriented design is about providing objects that are
able to do rich behavior, so they shouldn’t be simply providing data to other
objects. If you are making repeated calls for data by using accessors, that’s a
sign that some behavior should be moved to the object that has the data.

These examples also reinforce the fact that there is no hard-and-fast corre-
spondence between the UML and code, yet there is a similarity. Within a project
team, team conventions will lead to a closer correspondence.

Whether a property is implemented as a field or as a calculated value, it rep-
resents something an object can always provide. You shouldn’t use a property
to model a transient relationship, such as an object that is passed as a parame-
ter during a method call and used only within the confines of that interaction.

Bidirectional Associations

The associations we’ve looked at so far are called unidirectional associations.
Another common kind of association is a bidirectional association, such as
Figure 3.4.

42

C

HAPTER

 3 C

LASS

 D

IAGRAMS

: T

HE

 E

SSENTIALS

A bidirectional association is a pair of properties that are linked together as
inverses. The Car class has property

owner:Person[

0

..1]

, and the Person class has a
property

cars:Car[*].

 (Note how I named the

cars

 property in the plural form of
the property’s type, a common but non-normative convention.)

The inverse link between them implies that if you follow both properties,
you should get back to a set that contains your starting point. For example, if I
begin with a particular MG Midget, find its owner, and then look at its owner’s
cars, that set should contain the Midget that I started from.

As an alternative to labeling an association by a property, many people, par-
ticularly if they have a data-modeling background, like to label an association
by using a verb phrase (Figure 3.5) so that the relationship can be used in a sen-
tence. This is legal and you can add an arrow to the association to avoid ambi-
guity. Most object modelers prefer to use a property name, as that corresponds
better to responsibilities and operations.

Some people name every association in some way. I choose to name an asso-
ciation only when doing so improves understanding. I’ve seen too many associ-
ations with such names as “has” or “is related to.”

In Figure 3.4, the bidirectional nature of the association is made obvious by
the

navigability arrows

 at both ends of the association. Figure 3.5 has no
arrows; the UML allows you to use this form either to indicate a bidirectional
association or when you aren’t showing navigability. My preference is to use
the double-headed arrow of Figure 3.4 when you want to make it clear that you
have a bidirectional association.

Implementing a bidirectional association in a programming language is
often a little tricky because you have to be sure that both properties are kept

Person Car
owner

0..1 *
Figure 3.4 A bidirectional association

Person Car
0..1 *

Owns

Figure 3.5 Using a verb phrase to name an association

OPERATIONS 43

synchronized. Using C#, I use code along these lines to implement a bidirec-
tional association:

class Car...
 public Person Owner {
 get {return _owner;}
 set {
 if (_owner != null) _owner.friendCars().Remove(this);
 _owner = value;
 if (_owner != null) _owner.friendCars().Add(this);
 }
 }
 private Person _owner;
...

class Person ...
 public IList Cars {
 get {return ArrayList.ReadOnly(_cars);}
 }
 public void AddCar(Car arg) {
 arg.Owner = this;
 }
 private IList _cars = new ArrayList();
 internal IList friendCars() {
 //should only be used by Car.Owner
 return _cars;
 }
....

The primary thing is to let one side of the association—a single-valued side,
if possible—control the relationship. For this to work, the slave end (Person)
needs to leak the encapsulation of its data to the master end. This adds to the
slave class an awkward method, which shouldn’t really be there, unless the lan-
guage has fine-grained access control. I’ve used the naming convention of
“friend” here as a nod to C++, where the master’s setter would indeed be a
friend. Like much property code, this is pretty boilerplate stuff, which is why
many people prefer to use some form of code generation to produce it.

In conceptual models, navigability isn’t an important issue, so I don’t show
any navigability arrows on conceptual models.

Operations

Operations are the actions that a class knows to carry out. Operations most
obviously correspond to the methods on a class. Normally, you don’t show

44 CHAPTER 3 CLASS DIAGRAMS: THE ESSENTIALS

those operations that simply manipulate properties, because they can usually be
inferred.

The full UML syntax for operations is:

visibility name (parameter-list) : return-type {property-string}

• This visibility marker is public (+) or private (-); others on page 83.

• The name is a string.

• The parameter-list is the list of parameters for the operation.

• The return-type is the type of the returned value, if there is one.

• The property-string indicates property values that apply to the given
operation.

The parameters in the parameter list are notated in a similar way to
attributes. The form is:

direction name: type = default value

• The name, type, and default value are the same as for attributes.

• The direction indicates whether the parameter is input (in), output (out) or
both (inout). If no direction is shown, it’s assumed to be in.

An example operation on account might be:

+ balanceOn (date: Date) : Money

With conceptual models, you shouldn’t use operations to specify the inter-
face of a class. Instead, use them to indicate the principal responsibilities of that
class, perhaps using a couple of words summarizing a CRC responsibility
(page 65).

I often find it useful to distinguish between operations that change the state of
the system and those that don’t. UML defines a query as an operation that gets a
value from a class without changing the system state—in other words, without
side effects. You can mark such an operation with the property string {query}. I
refer to operations that do change state as modifiers, also called commands.

Strictly, the difference between query and modifiers is whether they change
the observable state [Meyer]. The observable state is what can be perceived
from the outside. An operation that updates a cache would alter the internal
state but would have no effect that’s observable from the outside.

I find it helpful to highlight queries, as you can change the order of execution
of queries and not change the system behavior. A common convention is to try

GENERALIZATION 45

to write operations so that modifiers do not return a value; that way, you can
rely on the fact that operations that return a value are queries. [Meyer] refers to
this as the Command-Query separation principle. It’s sometimes awkward to
do this all the time, but you should do it as much as you can.

Other terms you sometimes see are getting methods and setting methods. A
getting method returns a value from a field (and does nothing else). A setting
method puts a value into a field (and does nothing else). From the outside, a cli-
ent should not be able to tell whether a query is a getting method or a modifier
is a setting method. Knowledge of getting and setting methods is entirely inter-
nal to the class.

Another distinction is between operation and method. An operation is some-
thing that is invoked on an object—the procedure declaration—whereas a
method is the body of a procedure. The two are different when you have poly-
morphism. If you have a supertype with three subtypes, each of which overrides
the supertype’s getPrice operation, you have one operation and four methods
that implement it.

People usually use the terms operation and method interchangeably, but
there are times when it is useful to be precise about the difference.

Generalization

A typical example of generalization involves the personal and corporate cus-
tomers of a business. They have differences but also many similarities. The sim-
ilarities can be placed in a general Customer class (the supertype), with Personal
Customer and Corporate Customer as subtypes.

This phenomenon is also subject to various interpretations at the various
perspectives of modeling. Conceptually, we can say that Corporate Customer is
a subtype of Customer if all instances of Corporate Customer are also, by defi-
nition, instances of Customer. A Corporate Customer is then a special kind of
Customer. The key idea is that everything we say about a Customer—associa-
tions, attributes, operations—is true also for a Corporate Customer.

With a software perspective, the obvious interpretation is inheritance: The
Corporate Customer is a subclass of Customer. In mainstream OO languages,
the subclass inherits all the features of the superclass and may override any
superclass methods.

An important principle of using inheritance effectively is substitutability. I
should be able to substitute a Corporate Customer within any code that requires

46 CHAPTER 3 CLASS DIAGRAMS: THE ESSENTIALS

a Customer, and everything should work fine. Essentially, this means that if I
write code assuming I have a Customer, I can freely use any subtype of Cus-
tomer. The Corporate Customer may respond to certain commands differently
from another Customer, using polymorphism, but the caller should not need to
worry about the difference. (For more on this, see the Liskov Substitution Princi-
ple (LSP) in [Martin].)

Although inheritance is a powerful mechanism, it brings in a lot of baggage
that isn’t always needed to achieve substitutability. A good example of this was in
the early days of Java, when many people didn’t like the implementation of the
built-in Vector class and wanted to replace it with something lighter. However,
the only way they could produce a class that was substitutable for Vector was to
subclass it, and that meant inheriting a lot of unwanted data and behavior.

Many other mechanisms can be used to provide substitutable classes. As a
result, many people like to differentiate between subtyping, or interface inherit-
ance, and subclassing, or implementation inheritance. A class is a subtype if it is
substitutable for its supertype, whether or not it uses inheritance. Subclassing is
used as a synonym for regular inheritance.

Many other mechanisms are available that allow you to have subtyping
without subclassing. Examples are implementing an interface (page 69) and
many of the standard design patterns [Gang of Four].

Notes and Comments

Notes are comments in the diagrams. Notes can stand on their own, or they can
be linked with a dashed line to the elements they are commenting (Figure 3.6).
They can appear in any kind of diagram.

The dashed line can sometimes be awkward because you can’t position exactly
where this line ends. So a common convention is to put a very small open circle at
the end of the line. Sometimes, it’s useful to have an in-line comment on a dia-
gram element. You can do this by prefixing the text with two dashes: --.

Car
Includes pick-ups
and SUVs but not
motorbikes

Figure 3.6 A note is used as a comment on one or more diagram elements

DEPENDENCY 47

Dependency

A dependency exists between two elements if changes to the definition of one
element (the supplier or target) may cause changes to the other (the client or
source). With classes, dependencies exist for various reasons: One class sends a
message to another; one class has another as part of its data; one class mentions
another as a parameter to an operation. If a class changes its interface, any mes-
sage sent to that class may no longer be valid.

As computer systems grow, you have to worry more and more about con-
trolling dependencies. If dependencies get out of control, each change to a sys-
tem has a wide ripple effect as more and more things have to change. The
bigger the ripple, the harder it is to change anything.

The UML allows you to depict dependencies between all sorts of elements.
You use dependencies whenever you want to show how changes in one element
might alter other elements.

Figure 3.7 shows some dependencies that you might find in a multilayered
application. The Benefits Window class—a user interface, or presentation class—
is dependent on the Employee class: a domain object that captures the essential
behavior of the system—in this case, business rules. This means that if the
employee class changes its interface, the Benefits Window may have to change.

The important thing here is that the dependency is in only one direction and
goes from the presentation class to the domain class. This way, we know that
we can freely alter the Benefits Window without those changes having any
effect on the Employee or other domain objects. I’ve found that a strict separa-
tion of presentation and domain logic, with the presentation depending on the
domain but not vice versa, has been a valuable rule for me to follow.

Benefits
Window

Employee

Employee
Data Gateway

Benefits
Data Gateway

dependency

supplierclient

Figure 3.7 Example dependencies

48 CHAPTER 3 CLASS DIAGRAMS: THE ESSENTIALS

A second notable thing from this diagram is that there is no direct dependency
from the Benefits Window to the two Data Gateway classes. If these classes
change, the Employee class may have to change. But if the change is only to the
implementation of the Employee class, not its interface, the change stops there.

The UML has many varieties of dependency, each with particular semantics
and keywords. The basic dependency that I’ve outlined here is the one I find the
most useful, and I usually use it without keywords. To add more detail, you can
add an appropriate keyword (Table 3.1).

The basic dependency is not a transitive relationship. An example of a transi-
tive relationship is the “larger beard” relationship. If Jim has a larger beard
than Grady, and Grady has a larger beard than Ivar, we can deduce that Jim has
a larger beard than Ivar. Some kind of dependencies, such as substitute, are
transitive, but in most cases there is a significant difference between direct and
indirect dependencies, as there is in Figure 3.7.

Many UML relationships imply a dependency. The navigable association
from Order to Customer in Figure 3.1 means that Order is dependent on Cus-
tomer. A subclass is dependent on its superclass but not vice versa.

Table 3.1 Selected Dependency Keywords

Keyword Meaning

«call» The source calls an operation in the target.

«create» The source creates instances of the target.

«derive» The source is derived from the target.

«instantiate» The source is an instance of the target. (Note that if the
source is a class, the class itself is an instance of the class
class; that is, the target class is a metaclass).

«permit» The target allows the source to access the target’s private
features.

«realize» The source is an implementation of a specification or
interface defined by the target (page 69).

«refine» Refinement indicates a relationship between different
semantic levels; for example, the source might be a design
class and the target the corresponding analysis class.

«substitute» The source is substitutable for the target (page 45).

«trace» Used to track such things as requirements to classes or
how changes in one model link to changes elsewhere.

«use» The source requires the target for its implementation.

CONSTRAINT RULES 49

Your general rule should be to minimize dependencies, particularly when they
cross large areas of a system. In particular, you should be wary of cycles, as
they can lead to a cycle of changes. I’m not super strict on this. I don’t mind
mutual dependencies between closely related classes, but I do try to eliminate
cycles at a broader level, particularly between packages.

Trying to show all the dependencies in a class diagram is an exercise in futil-
ity; there are too many and they change too much. Be selective and show depen-
dencies only when they are directly relevant to the particular topic that you
want to communicate. To understand and control dependencies, you are best
off using them with package diagrams (pages 89).

The most common case I use for dependencies with classes is when illustrating
a transient relationship, such as when one object is passed to another as a param-
eter. You may see these used with keywords «parameter», «local», and «global». You
may also see these keywords on associations in UML 1 models, in which case
they indicate transient links, not properties. These keywords are not part of
UML 2.

Dependencies can be determined by looking at code, so tools are ideal for
doing dependency analysis. Getting a tool to reverse engineer pictures of depen-
dencies is the most useful way to use this bit of the UML.

Constraint Rules

Much of what you are doing in drawing a class diagram is indicating con-
straints. Figure 3.1 indicates that an Order can be placed only by a single Cus-
tomer. The diagram also implies that each Line Item is thought of separately:
You say “40 brown widgets, 40 blue widgets, and 40 red widgets,” not “120
things” on the Order. Further, the diagram says that Corporate Customers have
credit limits but Personal Customers do not.

The basic constructs of association, attribute, and generalization do much to
specify important constraints, but they cannot indicate every constraint. These
constraints still need to be captured; the class diagram is a good place to do
that.

The UML allows you to use anything to describe constraints. The only rule is
that you put them inside braces ({}). You can use natural language, a program-
ming language, or the UML’s formal Object Constraint Language (OCL)
[Warmer and Kleppe], which is based on predicate calculus. Using a formal
notation avoids the risk of misinterpretation due to an ambiguous natural lan-
guage. However, it introduces the risk of misinterpretation due to writers and

50 CHAPTER 3 CLASS DIAGRAMS: THE ESSENTIALS

readers not really understanding OCL. So unless you have readers who are
comfortable with predicate calculus, I’d suggest using natural language.

Optionally, you can name a constraint by putting the name first, followed by
a colon; for example, {disallow incest: husband and wife must not be siblings}.

Design by Contract

Design by Contract is a design technique developed by Bertrand Meyer
[Meyer]. The technique is a central feature of the Eiffel language he devel-
oped. Design by Contract is not specific to Eiffel, however; it is a valuable
technique that can be used with any programming language.

At the heart of Design by Contract is the assertion. An assertion is a
Boolean statement that should never be false and, therefore, will be false
only because of a bug. Typically, assertions are checked only during debug
and are not checked during production execution. Indeed, a program
should never assume that assertions are being checked.

Design by Contract uses three particular kinds of assertions: post-
conditions, pre-conditions, and invariants. Pre-conditions and post-
conditions apply to operations. A post-condition is a statement of what
the world should look like after execution of an operation. For instance, if
we define the operation “square root” on a number, the post-condition
would take the form input = result * result, where result is the output and
input is the input value. The post-condition is a useful way of saying what
we do without saying how we do it—in other words, of separating inter-
face from implementation.

A pre-condition is a statement of how we expect the world to be before
we execute an operation. We might define a pre-condition for the “square
root” operation of input > = 0. Such a pre-condition says that it is an error
to invoke “square root” on a negative number and that the consequences
of doing so are undefined.

On first glance, this seems a bad idea, because we should put some
check somewhere to ensure that “square root” is invoked properly. The
important question is who is responsible for doing so.

The pre-condition makes it explicit that the caller is responsible for
checking. Without this explicit statement of responsibilities, we can get
either too little checking—because both parties assume that the other is
responsible—or too much—both parties check. Too much checking is a
bad thing because it leads to a lot of duplicate checking code, which can

WHEN TO USE CLASS DIAGRAMS 51

When to Use Class Diagrams

Class diagrams are the backbone of the UML, so you will find yourself using
them all the time. This chapter covers the basic concepts; Chapter 5 discusses
many of the advanced concepts.

significantly increase the complexity of a program. Being explicit about
who is responsible helps to reduce this complexity. The danger that the
caller forgets to check is reduced by the fact that assertions are usually
checked during debugging and testing.

From these definitions of pre-condition and post-condition, we can see
a strong definition of the term exception. An exception occurs when an
operation is invoked with its pre-condition satisfied yet cannot return with
its post-condition satisfied.

An invariant is an assertion about a class. For instance, an Account class
may have an invariant that says that balance == sum(entries.amount()). The
invariant is “always” true for all instances of the class. Here, “always”
means “whenever the object is available to have an operation invoked
on it.”

In essence, this means that the invariant is added to pre-conditions and
post-conditions associated with all public operations of the given class.
The invariant may become false during execution of a method, but it
should be restored to true by the time any other object can do anything to
the receiver.

Assertions can play a unique role in subclassing. One of the dangers of
inheritance is that you could redefine a subclass’s operations to be incon-
sistent with the superclass’s operations. Assertions reduce the chances of
this. The invariants and post-conditions of a class must apply to all sub-
classes. The subclasses can choose to strengthen these assertions but can-
not weaken them. The pre-condition, on the other hand, cannot be
strengthened but may be weakened.

This looks odd at first, but it is important to allow dynamic binding.
You should always be able to treat a subclass object as if it were an
instance of the superclass, per the principle of substitutability. If a subclass
strengthened its pre-condition, a superclass operation could fail when
applied to the subclass.

52 CHAPTER 3 CLASS DIAGRAMS: THE ESSENTIALS

The trouble with class diagrams is that they are so rich, they can be over-
whelming to use. Here are a few tips.

• Don’t try to use all the notations available to you. Start with the simple
stuff in this chapter: classes, associations, attributes, generalization, and
constraints. Introduce other notations from Chapter 5 only when you need
them.

• I’ve found conceptual class diagrams very useful in exploring the language
of a business. For this to work, you have to work hard on keeping soft-
ware out of the discussion and keeping the notation very simple.

• Don’t draw models for everything; instead, concentrate on the key areas. It
is better to have a few diagrams that you use and keep up to date than to
have many forgotten, obsolete models.

The biggest danger with class diagrams is that you can focus exclusively on
structure and ignore behavior. Therefore, when drawing class diagrams to
understand software, always do them in conjunction with some form of behav-
ioral technique. If you’re going well, you’ll find yourself swapping between the
techniques frequently.

Where to Find Out More

All the general UML books I mentioned in Chapter 1 talk about class diagrams
in more detail. Dependency management is a critical feature of larger projects.
The best book on this topic is [Martin].

53

Chapter 4

Sequence Diagrams

Interaction diagrams describe how groups of objects collaborate in some behav-
ior. The UML defines several forms of interaction diagram, of which the most
common is the sequence diagram.

Typically, a sequence diagram captures the behavior of a single scenario. The
diagram shows a number of example objects and the messages that are passed
between these objects within the use case.

To begin the discussion, I’ll consider a simple scenario. We have an order and
are going to invoke a command on it to calculate its price. To do that, the order
needs to look at all the line items on the order and determine their prices, which
are based on the pricing rules of the order line’s products. Having done that for
all the line items, the order then needs to compute an overall discount, which is
based on rules tied to the customer.

Figure 4.1 is a sequence diagram that shows one implementation of that sce-
nario. Sequence diagrams show the interaction by showing each participant
with a lifeline that runs vertically down the page and the ordering of messages
by reading down the page.

One of the nice things about a sequence diagram is that I almost don’t have
to explain the notation. You can see that an instance of order sends getQuantity
and getProduct messages to the order line. You can also see how we show the
order invoking a method on itself and how that method sends getDiscountInfo to
an instance of customer.

The diagram, however, doesn’t show everything very well. The sequence of
messages getQuantity, getProduct, getPricingDetails, and calculateBasePrice needs to
be done for each order line on the order, while calculateDiscounts is invoked just
once. You can’t tell that from this diagram, although I’ll introduce some more
notation to handle that later.

Most of the time, you can think of the participants in an interaction diagram
as objects, as indeed they were in UML 1. But in UML 2, their roles are much
more complicated, and to explain it all fully is beyond this book. So I use the

54 CHAPTER 4 SEQUENCE DIAGRAMS

term participants, a word that isn’t used formally in the UML spec. In UML 1,
participants were objects and so their names were underlined, but in UML 2,
they should be shown without the underline, as I’ve done here.

In these diagrams, I’ve named the participants using the style anOrder. This
works well most of the time. A fuller syntax is name : Class, where both the name
and the class are optional, but you must keep the colon if you use the class.
(Figure 4.4, shown on page 58, uses this style.)

Each lifeline has an activation bar that shows when the participant is active in
the interaction. This corresponds to one of the participant’s methods being on
the stack. Activation bars are optional in UML, but I find them extremely valu-
able in clarifying the behavior. My one exception is when exploring a design dur-
ing a design session, because they are awkward to draw on whiteboards.

Naming often is useful to correlate participants on the diagram. The call get-
Product is shown returning aProduct, which is the same name, and therefore the

getProduct

an Order an Order Line aProduct aCustomer

calculatePrice
getQuantity

getPricingDetails

calculateDiscounts

getDiscountInfo

calculateBasePrice

lifeline

activation

message

self-call

aProduct

return

found
message

participant

Figure 4.1 A sequence diagram for centralized control

SEQUENCE DIAGRAMS 55

same participant, as the aProduct that the getPricingDetails call is sent to. Note
that I’ve used a return arrow for only this call; I did that to show the correspon-
dence. Some people use returns for all calls, but I prefer to use them only where
they add information; otherwise, they simply clutter things. Even in this case,
you could probably leave the return out without confusing your reader.

The first message doesn’t have a participant that sent it, as it comes from an
undetermined source. It’s called a found message.

For another approach to this scenario, take a look at Figure 4.2. The basic
problem is still the same, but the way in which the participants collaborate to
implement it is very different. The Order asks each Order Line to calculate its
own Price. The Order Line itself further hands off the calculation to the Product;
note how we show the passing of a parameter. Similarly, to calculate the dis-
count, the Order invokes a method on the Customer. Because it needs informa-
tion from the Order to do this, the Customer makes a reentrant call (getBaseValue)
to the Order to get the data.

The first thing to note about these two diagrams is how clearly the sequence
diagram indicates the differences in how the participants interact. This is the
great strength of interaction diagrams. They aren’t good at showing details of
algorithms, such as loops and conditional behavior, but they make the calls
between participants crystal clear and give a really good picture about which
participants are doing which processing.

an Order an Order Line aProduct aCustomer

calculatePrice
getPrice(quantity: number)

getDiscountedValue (an Order)

getBaseValue

discountedValue

parameter

return

calculatePrice

Figure 4.2 A sequence diagram for distributed control

56 CHAPTER 4 SEQUENCE DIAGRAMS

The second thing to note is the clear difference in styles between the two
interactions. Figure 4.1 is centralized control, with one participant pretty much
doing all the processing and other participants there to supply data. Figure 4.2
uses distributed control, in which the processing is split among many partici-
pants, each one doing a little bit of the algorithm.

Both styles have their strengths and weaknesses. Most people, particularly
those new to objects, are more used to centralized control. In many ways, it’s
simpler, as all the processing is in one place; with distributed control, in contrast,
you have the sensation of chasing around the objects, trying to find the program.

Despite this, object bigots like me strongly prefer distributed control. One of
the main goals of good design is to localize the effects of change. Data and
behavior that accesses that data often change together. So putting the data and
the behavior that uses it together in one place is the first rule of object-oriented
design.

Furthermore, by distributing control, you create more opportunities for using
polymorphism rather than using conditional logic. If the algorithms for product
pricing are different for different types of product, the distributed control mech-
anism allows us to use subclasses of product to handle these variations.

In general the OO style is to use a lot of little objects with a lot of little meth-
ods that give us a lot of plug points for overriding and variation. This style is
very confusing to people used to long procedures; indeed, this change is the
heart of the paradigm shift of object orientation. It’s something that’s very diffi-
cult to teach. It seems that the only way to really understand it is to work in an
OO environment with strongly distributed control for a while. Many people
then say that they get a sudden “aha” when the style makes sense. At this point,
their brains have been rewired, and they start thinking that decentralized con-
trol is actually easier.

Creating and Deleting Participants

Sequence diagrams show some extra notation for creating and deleting partici-
pants (Figure 4.3). To create a participant, you draw the message arrow directly
into the participant box. A message name is optional here if you are using a
constructor, but I usually mark it with “new” in any case. If the participant
immediately does something once it’s created, such as the query command, you
start an activation right after the participant box.

Deletion of a participant is indicated by big X. A message arrow going into
the X indicates one participant explicitly deleting another; an X at the end of a
lifeline shows a participant deleting itself.

LOOPS, CONDITIONALS, AND THE LIKE 57

In a garbage-collected environment, you don’t delete objects directly, but it’s
still worth using the X to indicate when an object is no longer needed and is
ready to be collected. It’s also appropriate for close operations, indicating that
the object isn’t usable any more.

Loops, Conditionals, and the Like

A common issue with sequence diagrams is how to show looping and condi-
tional behavior. The first thing to point out is that this isn’t what sequence dia-
grams are good at. If you want to show control structures like this, you are
better off with an activity diagram or indeed with code itself. Treat sequence

a Handler

a Query
Command

a Database
Statement

query database

new

new

execute

results

extract results

close

results

creation

self-deletion

deletion
from other

object

Figure 4.3 Creation and deletion of participants

58 CHAPTER 4 SEQUENCE DIAGRAMS

diagrams as a visualization of how objects interact rather than as a way of
modeling control logic.

That said, here’s the notation to use. Both loops and conditionals use interac-
tion frames, which are ways of marking off a piece of a sequence diagram. Fig-
ure 4.4 shows a simple algorithm based on the following pseudocode:

procedure dispatch
 foreach (lineitem)
 if (product.value > $10K)
 careful.dispatch
 else
 regular.dispatch
 end if
 end for
 if (needsConfirmation) messenger.confirm
end procedure

:Order

dispatch

alt

dispatch

dispatch

[else]

loop

frameoperator

guard

:Messenger

confirmopt

careful :
Distributor

regular :
Distributor

[for each line item]

[value > $10000]

[needsConfirmation]

Figure 4.4 Interaction frames

LOOPS, CONDITIONALS, AND THE LIKE 59

In general, frames consist of some region of a sequence diagram that is
divided into one or more fragments. Each frame has an operator and each frag-
ment may have a guard. (Table 4.1 lists common operators for interaction
frames.) To show a loop, you use the loop operator with a single fragment and
put the basis of the iteration in the guard. For conditional logic, you can use an
alt operator and put a condition on each fragment. Only the fragment whose
guard is true will execute. If you have only one region, there is an opt operator.

Interaction frames are new in UML 2. As a result, you may see diagrams pre-
pared before UML 2 that use a different approach; also, some people don’t like
the frames and prefer some of the older conventions. Figure 4.5 shows some of
these unofficial tweaks.

UML 1 used iteration markers and guards. An iteration marker is a * added
to the message name. You can add some text in square brackets to indicate the
basis of the iteration. Guards are a conditional expression placed in square
brackets and indicate that the message is sent only if the guard is true. While
these notations have been dropped from sequence diagrams in UML 2, they are
still legal on communication diagrams.

Although iteration markers and guards can help, they do have weaknesses.
The guards can’t indicate that a set of guards are mutually exclusive, such as the

Table 4.1 Common Operators for Interaction Frames

Operator Meaning

alt Alternative multiple fragments; only the one whose condition is
true will execute (Figure 4.4).

opt Optional; the fragment executes only if the supplied condition is
true. Equivalent to an alt with only one trace (Figure 4.4).

par Parallel; each fragment is run in parallel.

loop Loop; the fragment may execute multiple times, and the guard
indicates the basis of iteration (Figure 4.4).

region Critical region; the fragment can have only one thread executing it
at once.

neg Negative; the fragment shows an invalid interaction.

ref Reference; refers to an interaction defined on another diagram. The
frame is drawn to cover the lifelines involved in the interaction.
You can define parameters and a return value.

sd Sequence diagram; used to surround an entire sequence diagram, if
you wish.

60 CHAPTER 4 SEQUENCE DIAGRAMS

two on Figure 4.5. Both notations work only with a single message send and
don’t work well when several messages coming out of a single activation are
within the same loop or conditional block.

To get around this last problem, an unofficial convention that’s become pop-
ular is to use a pseudomessage, with the loop condition or the guard on a varia-
tion of the self-call notation. In Figure 4.5, I’ve shown this without a message
arrow; some people include a message arrow, but leaving it out helps reinforce
that this isn’t a real call. Some also like to gray shade the pseudomessage’s acti-
vation bar. If you have alternative behavior, you can show that with an alterna-
tive marker between the activations.

Although I find activations very helpful, they don’t add much in the case of
the dispatch method, whereby you send a message and nothing else happens
within the receiver’s activation. A common convention that I’ve shown on Fig-
ure 4.5 is to drop the activation for those simple calls.

an Order

dispatch

careful :
Distributor

regular :
Distributor

dispatch

dispatch

pseudo
message

guard

asynchronous
message (UML
1.3 and earlier)

asynchronous
message (UML
1.4 and later)

order idline no.

delivery iddata
tadpole

iteration marker

* [for each line item]

:Messenger

[value > $10000]

[else]
alternative

!
non

normative

[needsConfirmation] confirm

Figure 4.5 Older conventions for control logic

WHEN TO USE SEQUENCE DIAGRAMS 61

The UML standard has no graphic device to show passing data; instead, it’s
shown by parameters in the message name and return arrows. Data tadpoles
have been around in many methods to indicate the movement of data, and
many people still like to use them with the UML.

All in all, although various schemes can add notation for conditional logic to
sequence diagrams, I don’t find that they work any better than code or at least
pseudocode. In particular, I find the interaction frames very heavy, obscuring
the main point of the diagram, so I prefer pseudomessages.

Synchronous and Asynchronous Calls

If you’re exceptionally alert, you’ll have noticed that the arrowheads in the last
couple of diagrams are different from the arrowheads earlier on. That minor dif-
ference is quite important in UML 2. In UML 2, filled arrowheads show a syn-
chronous message, while stick arrowheads show an asynchronous message.

If a caller sends a synchronous message, it must wait until the message is
done, such as invoking a subroutine. If a caller sends an asynchronous message,
it can continue processing and doesn’t have to wait for a response. You see asyn-
chronous calls in multithreaded applications and in message-oriented middle-
ware. Asynchrony gives better responsiveness and reduces the temporal coupling
but is harder to debug.

The arrowhead difference is very subtle; indeed, rather too subtle. It’s also a
backward-incompatible change introduced in UML 1.4, before then an asyn-
chronous message was shown with the half-stick arrowhead, as in Figure 4.5.

I think that this arrowhead distinction is too subtle. If you want to highlight
asynchronous messages, I would recommend using the obsolete half-stick
arrowhead, which draws the eye much better to an important distinction. If
you’re reading a sequence diagram, beware of making assumptions about syn-
chrony from the arrowheads unless you’re sure that the author is intentionally
making the distinction.

When to Use Sequence Diagrams

You should use sequence diagrams when you want to look at the behavior of
several objects within a single use case. Sequence diagrams are good at showing
collaborations among the objects; they are not so good at precise definition of
the behavior.

62 CHAPTER 4 SEQUENCE DIAGRAMS

If you want to look at the behavior of a single object across many use cases,
use a state diagram (see Chapter 10). If you want to look at behavior across
many use cases or many threads, consider an activity diagram (see Chapter 11).

If you want to explore multiple alternative interactions quickly, you may be
better off with CRC cards, as that avoids a lot of drawing and erasing. It’s often
handy to have a CRC card session to explore design alternatives and then use
sequence diagrams to capture any interactions that you want to refer to later.

Other useful forms of interaction diagrams are communication diagrams, for
showing connections; and timing diagrams, for showing timing constraints.

CRC Cards

One of the most valuable techniques in coming up with a good OO design is
to explore object interactions, because it focuses on behavior rather than
data. CRC (Class-Responsibility-Collaboration) diagrams, invented by
Ward Cunningham in the late 1980s, have stood the test of time as a highly
effective way to do this (Figure 4.6). Although they aren’t part of the UML,
they are a very popular technique among skilled object designers.

To use CRC cards, you and your colleagues gather around a table. Take
various scenarios and act them out with the cards, picking them up in the
air when they are active and moving them to suggest how they send mes-
sages to each other and pass them around. This technique is almost impos-
sible to describe in a book yet is easily demonstrated; the best way to learn
it is to have someone who has done it show it to you.

 Order

Check if items in stock

Determine price

Order Line

Check for valid payment

Customer

Dispatch to delivery address

class name
responsibility collaboration

Figure 4.6 A sample CRC card

WHEN TO USE SEQUENCE DIAGRAMS 63

An important part of CRC thinking is identifying responsibilities. A
responsibility is a short sentence that summarizes something that an object
should do: an action the object performs, some knowledge the object
maintains, or some important decisions the object makes. The idea is that
you should be able to take any class and summarize it with a handful of
responsibilities. Doing that can help you think more clearly about the
design of your classes.

The second C refers to collaborators: the other classes that this class
needs to work with. This gives you some idea of the links between
classes—still at a high level.

One of the chief benefits of CRC cards is that they encourage animated
discussion among the developers. When you are working through a use
case to see how classes will implement it, the interaction diagrams in this
chapter can be slow to draw. Usually, you need to consider alternatives;
with diagrams, the alternatives can take too long to draw and rub out.
With CRC cards, you model the interaction by picking up the cards and
moving them around. This allows you to quickly consider alternatives.

As you do this, you form ideas about responsibilities and write them on
the cards. Thinking about responsibilities is important, because it gets you
away from the notion of classes as dumb data holders and eases the team
members toward understanding the higher-level behavior of each class. A
responsibility may correspond to an operation, to an attribute, or, more
likely, to an undetermined clump of attributes and operations.

A common mistake I see people make is generating long lists of low-
level responsibilities. But doing so misses the point. The responsibilities
should easily fit on one card. Ask yourself whether the class should be split
or whether the responsibilities would be better stated by rolling them up
into higher-level statements.

Many people stress the importance of role playing, whereby each per-
son on the team plays the role of one or more classes. I’ve never seen Ward
Cunningham do that, and I find that role playing gets in the way.

Books have been written on CRC, but I’ve found that they never really
get to the heart of the technique. The original paper on CRC, written with
Kent Beck, is [Beck and Cunningham]. To learn more about both CRC
cards and responsibilities in design, take a look at [Wirfs-Brock].

This page intentionally left blank

65

Chapter 5

Class Diagrams:
Advanced Concepts

The concepts described in Chapter 3 correspond to the key notations in class
diagrams. Those concepts are the first ones to understand and become familiar
with, as they will comprise 90 percent of your effort in building class diagrams.

The class diagram technique, however, has bred dozens of notations for
additional concepts. I find that I don’t use these all the time, but they are handy
when they are appropriate. I’ll discuss them one at a time and point out some of
the issues in using them.

You’ll probably find this chapter somewhat heavy going. The good news is
that during your first pass through the book, you can safely skip this chapter
and come back to it later.

Keywords

One of the challenges of a graphical language is that you have to remember
what the symbols mean. With too many, users find it very difficult to remem-
ber what all the symbols mean. So the UML often tries to reduce the number of
symbols and use keywords instead. If you find that you need a modeling con-
struct that isn’t in the UML but is similar to something that is, use the symbol
of the existing UML construct but mark it with a keyword to show that you
have something different

An example of this is the interface. A UML interface (page 69) is a class that
has only public operations, with no method bodies. This corresponds to inter-
faces in Java, COM (Component Object Module), and CORBA. Because it’s a

66 CHAPTER 5 CLASS DIAGRAMS: ADVANCED CONCEPTS

special kind of class, it is shown using the class icon with the keyword «inter-
face». Keywords are usually shown as text between guillemets. As an alternative
to keywords, you can use special icons, but then you run into the issue of every-
one having to remember what they mean.

Some keywords, such as {abstract}, show up in curly brackets. It’s never really
clear what should technically be in guillemets and what should be in curlies. For-
tunately, if you get it wrong, only serious UML weenies will notice—or care.

Some keywords are so common that they often get abbreviated: «interface»
often gets abbreviated to «I» and {abstract} to {A}. Such abbreviations are very
useful, particularly on whiteboards, but nonstandard, so if you use them, make
sure you find a spot to spell out what they mean.

In UML 1, the guillemets were used mainly for stereotypes. In UML 2, stereo-
types are defined very tightly, and describing what is and isn’t a stereotype is
beyond the scope of this book. However, because of UML 1, many people use
the term stereotype to mean the same as keyword, although that is no longer
correct.

Stereotypes are used as part of profiles. A profile takes a part of the UML
and extends it with a coherent group of stereotypes for a particular purpose,
such as business modeling. The full semantics of profiles are beyond this book.
Unless you are into serious meta-model design, you’re unlikely to need to create
one yourself. You’re more likely to use one created for a specific modeling pur-
pose, but fortunately, use of a profile doesn’t require you to know the gory
details of how they are tied into the meta-model.

Responsibilities

Often, it’s handy to show responsibilities (page 63) on a class in a class dia-
gram. The best way to show them is as comment strings in their own compart-
ment in the class (Figure 5.1). You can name the compartment, if you wish, but
I usually don’t, as there’s rarely any potential for confusion.

Static Operations and Attributes

The UML refers to an operation or an attribute that applies to a class rather
than to an instance as static. This is equivalent to static members in C-based
languages. Static features are underlined on a class diagram (see Figure 5.2).

AGGREGATION AND COMPOSITION 67

Aggregation and Composition

One of the most frequent sources of confusion in the UML is aggregation and
composition. It’s easy to explain glibly: Aggregation is the part-of relationship.
It’s like saying that a car has an engine and wheels as its parts. This sounds
good, but the difficult thing is considering what the difference is between aggre-
gation and association.

In the pre-UML days, people were usually rather vague on what was aggrega-
tion and what was association. Whether vague or not, they were always inconsis-
tent with everyone else. As a result, many modelers think that aggregation is
important, although for different reasons. So the UML included aggregation (Fig-
ure 5.3) but with hardly any semantics. As Jim Rumbaugh says, “Think of it as a
modeling placebo” [Rumbaugh, UML Reference].

Responsibilities
-- displays information
about the model

View

-- domain logic

Model

-- handles input events

Input Controller

Figure 5.1 Showing responsibilities in a class diagram

getNumber

Order

getNextNewNumberinstance

scope

static

Figure 5.2 Static notation

68 CHAPTER 5 CLASS DIAGRAMS: ADVANCED CONCEPTS

As well as aggregation, the UML has the more defined property of composi-
tion. In Figure 5.4, an instance of Point may be part of a polygon or may be the
center of a circle, but it cannot be both. The general rule is that, although a
class may be a component of many other classes, any instance must be a com-
ponent of only one owner. The class diagram may show multiple classes of
potential owners, but any instance has only a single object as its owner.

You’ll note that I don’t show the reverse multiplicities in Figure 5.4. In most
cases, as here, it’s 0..1. Its only other possible value is 1, for cases in which the
component class is designed so that it can have only one other class as its
owner.

The “no sharing” rule is the key to composition. Another assumption is that
if you delete the polygon, it should automatically ensure that any owned Points
also are deleted.

Composition is a good way of showing properties that own by value, proper-
ties to value objects (page 73), or properties that have a strong and somewhat
exclusive ownership of particular other components. Aggregation is strictly
meaningless; as a result, I recommend that you ignore it in your own diagrams.
If you see it in other people’s diagrams, you’ll need to dig deeper to find out what
they mean by it. Different authors and teams use it for very different purposes.

Derived Properties

Derived properties can be calculated based on other values. When we think
about a date range (Figure 5.5), we can think of three properties: the start date,

* *
Club Person

members

Figure 5.3 Aggregation

13..*
Polygon Point Circle

{ordered} center

Figure 5.4 Composition

I

NTERFACES

AND

 A

BSTRACT

 C

LASSES

69

the end date, and the number of days in the period. These values are linked, so
we can think of the length as being derived from the other two values.

Derivation in software perspectives can be interpreted in a couple of differ-
ent ways. You can use derivation to indicate the difference between a calculated
value and a stored value. In this case, we would interpret Figure 5.5 as indicat-
ing that the start and end are stored but that the length is computed. Although
this is a common use, I’m not so keen, because it reveals too much of the inter-
nals of

DateRange

.
My preferred thinking is that it indicates a constraint between values. In this

case, we are saying that the constraint among the three values holds, but it isn’t
important which of the three values is computed. In this case, the choice of
which attribute to mark as derived is arbitrary and strictly unnecessary, but it’s
useful to help remind people of the constraint. This usage also makes sense with
conceptual diagrams.

Derivation can also be applied to properties using association notation. In
this case, you simply mark the name with a /.

Interfaces and Abstract Classes

An

abstract class

 is a class that cannot be directly instantiated. Instead, you
instantiate an instance of a subclass. Typically, an abstract class has one or
more operations that are abstract. An

abstract operation

 has no implementa-
tion; it is pure declaration so that clients can bind to the abstract class.

The most common way to indicate an abstract class or operation in the UML
is to

italicize

 the name. You can also make properties abstract, indicating an
abstract property or accessor methods. Italics are tricky to do on a white-
boards, so you can use the label:

{abstract}

.
An interface is a class that has no implementation; that is, all its features are

abstract. Interfaces correspond directly to interfaces in C# and Java and are a

derived
attribute

Date Range

start: Date

end: Date

/length: Integer

{length = end – start}

Figure 5.5 Derived attribute in a time period

70 CHAPTER 5 CLASS DIAGRAMS: ADVANCED CONCEPTS

common idiom in other typed languages. You mark an interface with the key-
word «interface».

Classes have two kinds of relationships with interfaces: providing and requir-
ing. A class provides an interface if it is substitutable for the interface. In Java
and .NET, a class can do that by implementing the interface or implementing a
subtype of the interface. In C++, you subclass the class that is the interface.

A class requires an interface if it needs an instance of that interface in order
to work. Essentially, this is having a dependency on the interface.

Figure 5.6 shows these relationships in action, based on a few collection
classes from Java. I might write an Order class that has a list of line items.
Because I’m using a list, the Order class is dependent on the List interface. Let’s
assume that it uses the methods equals, add, and get. When the objects connect,

Figure 5.6 A Java example of interfaces and an abstract class

abstract
class

overriding

implementation
(provides
interface)

interface

Line Items [*]

Order
equals
get
add

Abstract List

get
add

ArrayList

get

«interface»
List

equals
add

«interface»
Collection

abstract
method

dependency
(requires
interface)

INTERFACES AND ABSTRACT CLASSES 71

the Order will actually use an instance of ArrayList but need not know that in
order to use those three methods, as they are all part of the List interface.

The ArrayList itself is a subclass of the AbstractList class. AbstractList provides
some, but not all, the implementation of the List behavior. In particular, the get
method is abstract. As a result, ArrayList implements get but also overrides some
of the other operations on AbstractList. In this case, it overrides add but is happy
to inherit the implementation of equals.

Why don’t I simply avoid this and have Order use ArrayList directly? By using
the interface, I allow myself the advantage of making it easier to change imple-
mentations later on if I need to. Another implementation may provide perfor-
mance improvements, some database interaction features, or other benefits. By
programming to the interface rather than to the implementation, I avoid having
to change all the code should I need a different implementation of List. You
should always try to program to an interface like this; always use the most gen-
eral type you can.

I should also point out a pragmatic wrinkle in this. When programmers use a
collection like this, they usually initialize the collection with a declaration, like
this:

private List lineItems = new ArrayList();

Note that this strictly introduces a dependency from Order to the concrete
ArrayList. In theory, this is a problem, but people don’t worry about it in prac-
tice. Because the type of lineItems is declared as List, no other part of the Order
class is dependent on ArrayList. Should we change the implementation, there’s
only this one line of initialization code that we need to worry about. It’s quite
common to refer to a concrete class once during creation but to use only the
interface afterward.

The full notation of Figure 5.6 is one way to notate interfaces. Figure 5.7
shows a more compact notation. The fact that ArrayList implements List and
Collection is shown by having ball icons (often referred to as lollipops) out of it.
The fact that Order requires a List interface is shown by the socket icon. The
connection is made by a dependency arrow.

Figure 5.7 Ball-and-socket notation

Line Items [*]

Order
ArrayList

Collection

List

72 CHAPTER 5 CLASS DIAGRAMS: ADVANCED CONCEPTS

UML has used the lollipop notation for a while, but the socket notation is
new to UML 2. The socket is also optional, so you’ll often see diagrams use the
style of Figure 5.8. (When you are using parts within Composite Structures, dis-
cussed in Chapter 13, you can mate the ball and socket—but you can only do
this with parts.)

Any class is a mix of an interface and an implementation. Therefore, we may
often see an object used through the interface of one of its superclasses. Strictly,
it wouldn’t be legal to use the lollipop notation for a superclass, as the super-
class is a class, not a pure interface. But I bend these rules for clarity.

As well as on class diagrams, people have found lollipops useful elsewhere.
One of the perennial problems with interaction diagrams is that they don’t pro-
vide a very good visualization for polymorphic behavior. Although it’s not nor-
mative usage, you can indicate this along the lines of Figure 5.9. Here, we can
see that, although we have an instance of Salesman, which is used as such by
the Bonus Calculator, the Pay Period object uses the Salesman only through its
Employee interface. (You can do the same trick with communication diagrams.)

Read-Only and Frozen

On page 37, I described the {readOnly} keyword. You use this keyword to mark a
property that can only be read by clients and that cannot be updated. Similar
yet different is the {frozen} keyword from UML 1. A property is frozen if it can-
not change during the lifetime of an object; such properties are often called
immutable. Although it was dropped from UML 2, {frozen} is a very useful con-
cept, so I would continue to use it. As well as marking individual properties as
frozen, you can apply the keyword to a class to indicate that all properties of all
instances are frozen. (I have heard that frozen may well be reinstated shortly.)

Figure 5.8 Older dependencies with lollipops

Line Items [*]

Order
ArrayList

Collection

List

REFERENCE OBJECTS AND VALUE OBJECTS 73

Reference Objects and Value Objects

One of the common things said about objects is that they have identity. This is
true, but it is not quite as simple as that. In practice, you find that identity is
important for reference objects but not so important for value objects.

Reference objects are such things as Customer. Here, identity is very impor-
tant because you usually want only one software object to designate a customer
in the real world. Any object that references a Customer object will do so
through a reference, or pointer; all objects that reference this Customer will ref-
erence the same software object. That way, changes to a Customer are available
to all users of the Customer.

If you have two references to a Customer and wish to see whether they are
the same, you usually compare their identities. Copies may be disallowed; if

Figure 5.9 Using a lollipop to show polymorphism in a sequence diagram

a Bonus
Calculator

Bruce: Salesman
march : Pay

Period
a scenario

evaluate

set bonus amount

calculatePayroll

employee

calculate Pay

message
through
interface

addToPayList (Bruce)

!
non-

normative

74 CHAPTER 5 CLASS DIAGRAMS: ADVANCED CONCEPTS

they are allowed, they tend to be made rarely, perhaps for archive purposes or
for replication across a network. If copies are made, you need to sort out how
to synchronize changes.

Value objects are such things as Date. You often have multiple value objects
representing the same object in the real world. For example, it is normal to have
hundreds of objects that designate 1-Jan-04. These are all interchangeable cop-
ies. New dates are created and destroyed frequently.

If you have two dates and wish to see whether they are the same, you don’t
look at their identities but rather at the values they represent. This usually
means that you have to write an equality test operator, which for dates would
make a test on year, month, and day—or whatever the internal representation
is. Each object that references 1-Jan-04 usually has its own dedicated object,
but you can also share dates.

Value objects should be immutable; in other words, you should not be able to
take a date object of 1-Jan-04 and change the same date object to be 2-Jan-04.
Instead, you should create a new 2-Jan-04 object and use that instead. The rea-
son is that if the date were shared, you would update another object’s date in an
unpredictable way, a problem referred to as aliasing.

In days gone by, the difference between reference objects and value objects
was clearer. Value objects were the built-in values of the type system. Now you
can extend the type system with your own classes, so this issue requires more
thought.

The UML uses the concept of data type, which is shown as a keyword on the
class symbol. Strictly, data type isn’t the same as value object, as data types
can’t have identity. Value objects may have an identity, but don’t use it for
equality. Primitives in Java would be data types, but dates would not, although
they would be value objects.

If it’s important to highlight them, I use composition when associating with a
value object. You can also use a keyword on a value type; common conven-
tional ones I see are «value» or «struct».

Qualified Associations

A qualified association is the UML equivalent of a programming concept vari-
ously known as associative arrays, maps, hashes, and dictionaries. Figure 5.10
shows a way that uses a qualifier to represent the association between the Order
and Order Line classes. The qualifier says that in connection with an Order,
there may be one Order Line for each instance of Product.

CLASSIFICATION AND GENERALIZATION 75

From a software perspective, this qualified association would imply an inter-
face along the lines of

class Order ...
 public OrderLine getLineItem(Product aProduct);
 public void addLineItem(Number amount, Product forProduct);

Thus, all access to a given Order Line requires a Product as an argument,
suggesting an implementation using a key and value data structure.

It’s common for people to get confused about the multiplicities of a qualified
association. In Figure 5.10, an Order may have many Line Items, but the multi-
plicity of the qualified association is the multiplicity in the context of the quali-
fier. So the diagram says that an Order has 0..1 Line Items per Product. A
multiplicity of 1 would indicate that Order would have to have a Line Item for
every instance of Product. A * would indicate that you would have multiple
Line Items per Product but that access to the Line Items is indexed by Product.

In conceptual modeling, I use the qualifier construct only to show constraints
along the lines of “single Order Line per Product on Order.”

Classification and Generalization

I often hear people talk about subtyping as the is a relationship. I urge you to
beware of that way of thinking. The problem is that the phrase is a can mean
different things.

Consider the following phrases.

1. Shep is a Border Collie.

2. A Border Collie is a Dog.

3. Dogs are Animals.

4. A Border Collie is a Breed.

5. Dog is a Species.

Figure 5.10 Qualified association

Order Line

amount:NumberProduct

 0..1

line item
Order

76 CHAPTER 5 CLASS DIAGRAMS: ADVANCED CONCEPTS

Now try combining the phrases. If I combine phrases 1 and 2, I get “Shep is
a Dog”; 2 and 3 taken together yield “Border Collies are Animals.” And 1 plus
2 plus 3 gives me “Shep is an Animal.” So far, so good. Now try 1 and 4: “Shep
is a Breed.” The combination of 2 and 5 is “A Border Collie is a Species.” These
are not so good.

Why can I combine some of these phrases and not others? The reason is that
some are classification—the object Shep is an instance of the type Border Col-
lie—and some are generalization—the type Border Collie is a subtype of the
type Dog. Generalization is transitive; classification is not. I can combine a clas-
sification followed by a generalization but not vice versa.

I make this point to get you to be wary of is a. Using it can lead to inappro-
priate use of subclassing and confused responsibilities. Better tests for subtyping
in this case would be the phrases “Dogs are kinds of Animals” and “Every
instance of a Border Collie is an instance of a Dog.”

The UML uses the generalization symbol to show generalization. If you need
to show classification, use a dependency with the «instantiate» keyword.

Multiple and Dynamic Classification

Classification refers to the relationship between an object and its type. Main-
stream programming languages assume that an object belongs to a single class.
But there are more options to classification than that.

In single classification, an object belongs to a single type, which may inherit
from supertypes. In multiple classification, an object may be described by sev-
eral types that are not necessarily connected by inheritance.

Multiple classification is different from multiple inheritance. Multiple inher-
itance says that a type may have many supertypes but that a single type must be
defined for each object. Multiple classification allows multiple types for an
object without defining a specific type for the purpose.

For example, consider a person subtyped as either man or woman, doctor or
nurse, patient or not (see Figure 5.11). Multiple classification allows an object
to have any of these types assigned to it in any allowable combination, without
the need for types to be defined for all the legal combinations.

If you use multiple classification, you need to be sure that you make it clear
which combinations are legal. UML 2 does this by placing each generalization
relationship into a generalization set. On the class diagram, you label the gener-
alization arrowhead with the name of the generalization set, which in UML 1

MULTIPLE AND DYNAMIC CLASSIFICATION 77

was called the discriminator. Single classification corresponds to a single gener-
alization set with no name.

Generalization sets are by default disjoint: Any instance of the supertype
may be an instance of only one of the subtypes within that set. If you roll up
generalizations into a single arrow, they must all be part of the same generaliza-
tion set, as shown in Figure 5.11. Alternatively, you can have several arrows
with the same text label.

To illustrate, note the following legal combinations of subtypes in the dia-
gram: (Female, Patient, Nurse); (Male, Physiotherapist); (Female, Patient); and
(Female, Doctor, Surgeon). The combination (Patient, Doctor, Nurse) is illegal
because it contains two types from the role generalization set.

Another question is whether an object may change its class. For example,
when a bank account is overdrawn, it substantially changes its behavior. Specif-
ically, several operations, including “withdraw” and “close,” get overridden.

Dynamic classification allows objects to change class within the subtyping
structure; static classification does not. With static classification, a separation is
made between types and states; dynamic classification combines these notions.

Should you use multiple, dynamic classification? I believe that it is useful for
conceptual modeling. For software perspectives, however, the distance between
it and the implementations is too much of a leap. In the vast majority of UML

Figure 5.11 Multiple classification

Female

Male

Person

Patient

Doctor

Nurse

Physio-

Family

therapist

Doctor

sex

patient

role

discriminator
Surgeon

78 CHAPTER 5 CLASS DIAGRAMS: ADVANCED CONCEPTS

diagrams, you’ll see only single static classification, so that should be your
default.

Association Class

Association classes allow you to add attributes, operations, and other features
to associations, as shown in Figure 5.12. We can see from the diagram that a
person may attend many meetings. We need to keep information about how
awake that person was; we can do this by adding the attribute attentiveness to
the association.

Figure 5.13 shows another way to represent this information: Make Atten-
dance a full class in its own right. Note how the multiplicities have moved.

What benefit do you gain with the association class to offset the extra nota-
tion you have to remember? The association class adds an extra constraint, in
that there can be only one instance of the association class between any two
participating objects. I feel the need for another example.

Figure 5.12 Association class

attentiveness

*
association class

2..*
MeetingPerson

Attendance

Figure 5.13 Promoting an association class to a full class

* 2..*
MeetingPerson attentiveness

Attendance

1 1

ASSOCIATION CLASS 79

Take a look at the two diagrams in Figure 5.14. These diagrams have much
the same form. However, we can imagine one Company playing different roles
in the same Contract, but it’s harder to imagine a Person having multiple com-
petencies in the same skill; indeed, you would probably consider that an error.

In the UML, only the latter case is legal. You can have only one competency
for each combination of Person and Skill. The top diagram in Figure 5.14 would
not allow a Company to have more than one Role on a single contract. If you
need to allow this, you need to make Role a full class, in the style of Figure 5.13.

Implementing association classes isn’t terribly obvious. My advice is to imple-
ment an association class as if it were a full class but to provide methods that get
information to the classes linked by the association class. So for Figure 5.12, I
would see the following methods on Person:

class Person
 List getAttendances()
 List getMeetings()

Figure 5.14 Association class subtleties (Role should probably not be an association class)

* ContractCompany

description

Role

*

* SkillPerson

level

Competency

*

80 CHAPTER 5 CLASS DIAGRAMS: ADVANCED CONCEPTS

This way, a client of Person can get hold of the people at the meeting; if they
want details, they can get the Attendances themselves. If you do this, remember
to enforce the constraint that there can be only one Attendance object for any
pair of Person and Meeting. You should place a check in whichever method cre-
ates the Attendance.

You often find this kind of construct with historical information, such as in
Figure 5.15. However, I find that creating extra classes or association classes
can make the model tricky to understand, as well as tilt the implementation in a
particular direction that’s often unsuitable.

If I have this kind of temporal information, I use a «temporal» keyword on the
association (see Figure 5.16). The model indicates that a Person may work for
only a single Company at one time. Over time, however, a Person may work
for several Companies. This suggests an interface along the lines of:

class Person ...
 Company getEmployer();//get current employer
 Company getEmployer(Date);//get employer at a given date
 void changeEmployer(Company newEmployer,Date changeDate);
 void leaveEmployer (Date changeDate);

The «temporal» keyword is not part of the UML, but I mention it here for two
reasons. First, it is a notion I have found useful on several occasions in my
modeling career. Second, it shows how you can use keywords to extend the
UML. You can read a lot more about this at http://martinfowler.com/ap2/
timeNarrative.html.

Figure 5.15 Using a class for a temporal relationship

CompanyPerson

**
1

period : dateRange

Employment1

Figure 5.16 «Temporal» keyword for associations

CompanyPerson *
0..1

employer
«temporal»

../../../../../martinfowler.com/ap2/timeNarrative.html
../../../../../martinfowler.com/ap2/timeNarrative.html

TEMPLATE (PARAMETERIZED) CLASS 81

Template (Parameterized) Class

Several languages, most noticeably C++, have the notion of a parameterized
class, or template. (Templates are on the list to be included in Java and C# in
the near future.)

This concept is most obviously useful for working with collections in a
strongly typed language. This way, you can define behavior for sets in general
by defining a template class Set.

class Set <T> {
 void insert (T newElement);
 void remove (T anElement);

When you have done this, you can use the general definition to make Set
classes for more specific elements:

Set <Employee> employeeSet;

You declare a template class in the UML by using the notation shown in Fig-
ure 5.17. The T in the diagram is a placeholder for the type parameter. (You
may have more than one.)

A use of a parameterized class, such as Set<Employee>, is called a derivation.
You can show a derivation in two ways. The first way mirrors the C++ syntax
(see Figure 5.18). You describe the derivation expression within angle brackets
in the form <parameter-name::parameter-value>. If there’s only one parameter, con-
ventional use often omits the parameter name. The alternative notation (see
Figure 5.19) reinforces the link to the template and allows you to rename the
bound element.

Figure 5.17 Template class

template parameter

template class

Set

insert(T)

remove(T)

 T

82 CHAPTER 5 CLASS DIAGRAMS: ADVANCED CONCEPTS

The «bind» keyword is a stereotype on the refinement relationship. This rela-
tionship indicates that EmployeeSet will conform to the interface of Set. You can
think of the EmployeeSet as a subtype of Set. This fits the other way of implement-
ing type-specific collections, which is to declare all appropriate subtypes.

Using a derivation is not the same as subtyping, however. You are not
allowed to add features to the bound element, which is completely specified by
its template; you are adding only restricting type information. If you want to
add features, you must create a subtype.

Enumerations

Enumerations (Figure 5.20) are used to show a fixed set of values that don’t
have any properties other than their symbolic value. They are shown as the
class with the «enumeration» keyword.

Figure 5.18 Bound element (version 1)

Set <T::Employee>

Figure 5.19 Bound element (version 2)

binding for parameter

template class

EmployeeSet

Set

insert(T)

remove(T)

 T

<T::Employee>

«bind»

bound element

VISIBILITY 83

Active Class

An active class has instances, each of which executes and controls its own
thread of control. Method invocations may execute in a client’s thread or in the
active object’s thread. A good example of this is a command processor that
accepts command objects from the outside and then executes the commands
within its own thread of control.

The notation for active classes has changed from UML 1 to UML 2, as
shown in Figure 5.21. In UML 2, an active class has extra vertical lines on the
side; in UML 1, it had a thick border and was called an active object.

Visibility

Visibility is a subject that is simple in principle but has complex subtleties. The
simple idea is that any class has public and private elements. Public elements
can be used by any other class; private elements can be used only by the owning
class. However, each language makes its own rules. Although many languages
use such terms as public, private, and protected, they mean different things in

Figure 5.20 Enumeration

red
white
blue

«enumeration»
Color

Figure 5.21 Active class

Command
Processor

Command
Processor

active class (UML 2)active object (UML 1)

84 CHAPTER 5 CLASS DIAGRAMS: ADVANCED CONCEPTS

different languages. These differences are small, but they lead to confusion,
especially for those of us who use more than one language.

The UML tries to address this without getting into a horrible tangle. Essen-
tially, within the UML, you can tag any attribute or operation with a visibility
indicator. You can use any marker you like, and its meaning is language depen-
dent. However, the UML provides four abbreviations for visibility: + (public),
– (private), ~ (package), and # (protected). These four levels are used within the
UML meta-model and are defined within it, but their definitions vary subtly
from those in other languages.

When you are using visibility, use the rules of the language in which you are
working. When you are looking at a UML model from elsewhere, be wary of
the meanings of the visibility markers, and be aware of how those meanings can
change from language to language.

Most of the time, I don’t draw visibility markers in diagrams; I use them only
if I need to highlight the differences in visibility of certain features. Even then, I
can mostly get away with + and –, which at least are easy to remember.

Messages

Standard UML does not show any information about message calls on class dia-
grams. However, I’ve sometimes seen conventional diagrams like Figure 5.22.

Figure 5.22 Classes with messages

getPrice (quantity)
getLeadTime

*

1

*1

1

*

calculatePrice
fill

calculatePrice
itemsWaiting

getDiscountedValue

getSpecialPrice

Order ItemOrder

Customer Product

!
non-

normative

MESSAGES 85

These add arrows to the sides of associations. The arrows are labeled with the
messages that one object sends to another. Because you don’t need an association
to a class to send a message to it, you may also need to add a dependency arrow
to show messages between classes that aren’t associated.

This message information spans multiple use cases, so they aren’t numbered
to show sequences, unlike communication diagrams.

This page intentionally left blank

87

Chapter 6

Object Diagrams

An object diagram is a snapshot of the objects in a system at a point in time.
Because it shows instances rather than classes, an object diagram is often called
an instance diagram.

You can use an object diagram to show an example configuration of objects.
(See Figure 6.1, which shows a set of classes, and Figure 6.2, which shows an
associated set of objects.) This latter use is very useful when the possible con-
nections between objects are complicated.

You can tell that the elements in Figure 6.2 are instances because the names
are underlined. Each name takes the form instance name : class name. Both parts of
the name are optional, so John, :Person, and aPerson are legal names. If you use
only the class name, you must include the colon. You can show values for
attributes and links, as in Figure 6.2.

Strictly, the elements of an object diagram are instance specifications rather
than true instances. The reason is that it’s legal to leave mandatory attributes
empty or to show instance specifications of abstract classes. You can think of an
instance specification as a partly defined instance.

Another way of looking at an object diagram is as a communication diagram
(page 131) without messages.

When to Use Object Diagrams

Object diagrams are useful for showing examples of objects connected together.
In many situations, you can define a structure precisely with a class diagram,
but the structure is still difficult to understand. In these situations, a couple of
object diagram examples can make all the difference.

88 CHAPTER 6 OBJECT DIAGRAMS

*
Party

OrganizationPerson

0..1 parent

children

location

Figure 6.1 Class diagram of Party composition structure

engineering : Organization

location = “Boston”

tools : Organization

location = “Chicago”

apps : Organization

location = “Saba”

John : Person

location = “Champaign”

parent

parent

location = “Champaign”

Don : Person

Figure 6.2 Object diagram showing example instances of Party

89

Chapter 7

Package Diagrams

Classes represent the basic form of structuring an object-oriented system.
Although they are wonderfully useful, you need something more to structure
large systems, which may have hundreds of classes.

A package is a grouping construct that allows you to take any construct in
the UML and group its elements together into higher-level units. Its most com-
mon use is to group classes, and that’s the way I’m describing it here, but
remember that you can use packages for every other bit of the UML as well.

In a UML model, each class is a member of a single package. Packages can
also be members of other packages, so you are left with a hierarchic structure in
which top-level packages get broken down into subpackages with their own sub-
packages and so on until the hierarchy bottoms out in classes. A package can
contain both subpackages and classes.

In programming terms, packages correspond to such grouping constructs as
packages (in Java) and namespaces (in C++ and .NET).

Each package represents a namespace, which means that every class must
have a unique name within its owning package. If I want to create a class called
Date, and a Date class is already in the System package, I can have my Date
class as long as I put it in a separate package. To make it clear which is which, I
can use a fully qualified name, that is, a name that shows the owning package
structure. You use double colons to show package names in UML, so the dates
might be System::Date and MartinFowler::Util::Date.

In diagrams, packages are shown with a tabbed folder, as in Figure 7.1. You
can simply show the package name or show the contents too. At any point,
you can use fully qualified names or simply regular names. Showing the con-
tents with class icons allows you to show all the details of a class, even to the
point of showing a class diagram within the package. Simply listing the names
makes sense when all you want to do is indicate which classes are in which
packages.

90 CHAPTER 7 PACKAGE DIAGRAMS

It’s quite common to see a class labeled something like Date (from java.util)
rather than the fully qualified form. This style is a convention that was done a
lot by Rational Rose; it isn’t part of the standard.

The UML allows classes in a package to be public or private. A public class
is part of the interface of the package and can be used by classes in other pack-
ages; a private class is hidden. Different programming environments have dif-
ferent rules about visibility between their packaging constructs; you should
follow the convention of your programming environment, even if it means
bending the UML’s rules.

A useful technique here is to reduce the interface of the package by exporting
only a small subset of the operations associated with the package’s public
classes. You can do this by giving all classes private visibility, so that they can be
seen only by other classes in the same package, and by adding extra public
classes for the public behavior. These extra classes, called Facades [Gang of
Four], then delegate public operations to their shyer companions in the package.

How do you choose which classes to put in which packages? This is actually
quite an involved question that needs a good bit of design skill to answer. Two

Date

util util

Dateutil

Contents listed in box Contents diagramed in box

Nested packages

util

Date

java

Fully qualified package name

java::util

Date
java::util::Date

Fully qualified class name

Figure 7.1 Ways of showing packages on diagrams

PACKAGES AND DEPENDENCIES 91

useful principles are the Common Closure Principle and Common Reuse Prin-
ciple [Martin]. The Common Closure Principle says that the classes in a pack-
age should need changing for similar reasons. The Common Reuse Principle
says that classes in a package should all be reused together. Many of the reasons
for grouping classes in packages have to do with the dependencies between the
packages, which I’ll come to next.

Packages and Dependencies

A package diagram shows packages and their dependencies. I introduced the
concept of dependency on page 47. If you have packages for presentation and
domain, you have a dependency from the presentation package to the domain
package if any class in the presentation package has a dependency to any class
in the domain package. In this way, interpackage dependencies summarize the
dependencies between their contents.

The UML has many varieties of dependency, each with particular semantics
and stereotype. I find it easier to begin with the unstereotyped dependency and
use the more particular dependencies only if I need to, which I hardly ever do.

In a medium to large system, plotting a package diagram can be one of the
most valuable things you can do to control the large-scale structure of the sys-
tem. Ideally, this diagram should be generated from the code base itself, so that
you can see what is really there in the system.

A good package structure has a clear flow to the dependencies, a concept
that’s difficult to define but often easier to recognize. Figure 7.2 shows a sample
package diagram for an enterprise application, one that is well-structured and
has a clear flow.

Often, you can identify a clear flow because all the dependencies run in a sin-
gle direction. Although that is a good indicator of a well-structured system, the
data mapper packages of Figure 7.2 show an exception to that rule of thumb.
The data mapper packages act as an insulating layer between the domain and
database packages, an example of the Mapper pattern [Fowler, P of EAA].

Many authors say that there should be no cycles in the dependencies (the
Acyclic Dependency Principle [Martin]). I don’t treat that as an absolute rule,
but I do think that cycles should be localized and that, in particular, you
shouldn’t have cycles that cross layers.

The more dependencies coming into a package, the more stable the package’s
interface needs to be, as any change in its interface will ripple into all the pack-
ages that are dependent on it (the Stable Dependencies Principle [Martin]). So
in Figure 7.2, the asset domain package needs a more stable interface than the

92 CHAPTER 7 PACKAGE DIAGRAMS

leasing data mapper package. Often, you’ll find that the more stable packages
tend to have a higher proportion of interfaces and abstract classes (the Stable
Abstractions Principle [Martin].

The dependency relationships are not transitive (page 48). To see why this is
important for dependencies, look at Figure 7.2 again. If a class in the asset
domain package changes, we may have a change to classes within the leasing
domain package. But this change does not necessarily ripple through to the
leasing presentation. (It ripples only if the leasing domain changes its interface.)

Some packages are used in so many places that it would be a mess to draw
all the dependency lines to them. In this case, a convention is to use a keyword,
such as «global», on the package.

UML packages also define constructs to allow packages to import and merge
classes from one package into another, using dependencies with keywords to

UI framework

database

leasing
presentation

asset
presentation

asset data
mapper

leasing data
mapper

asset domainleasing domain

Figure 7.2 Package diagram for an enterprise application

PACKAGE ASPECTS 93

notate this. However, rules for this kind of thing vary greatly with program-
ming languages. On the whole, I find the general notion of dependencies to be
far more useful in practice.

Package Aspects

If you think about Figure 7.2, you’ll realize that the diagram has two kinds of
structures. One is a structure of layers in the application: presentation, domain,
data mapper, and database. The other is a structure of subject areas: leasing and
assets.

You can make this more apparent by separating the two aspects, as in Fig-
ure 7.3. With this diagram, you can clearly see each aspect. However, these
two aspects aren’t true packages, because you can’t assign classes to a single
package. (You would have to pick one from each aspect.) This problem mirrors

presentation UI framework

domain

data mapper

database

leasing

asset
!

non-
normative

Figure 7.3 Separating Figure 7.2 into two aspects

94 CHAPTER 7 PACKAGE DIAGRAMS

the problem in the hierarchic namespaces in programming languages. Although
diagrams like Figure 7.3 are nonstandard UML, they are often very helpful in
explaining the structure of a complex application.

Implementing Packages

Often, you’ll see a case in which one package defines an interface that can be
implemented by a number of other packages, such as that of Figure 7.4. In this
case, the realization relationship indicates that the database gateway defines an
interface and that the other gateway classes provide an implementation. In
practice, this would mean that the database gateway package contains inter-
faces and abstract classes that are fully implemented by the other packages.

It’s quite common for an interface and its implementation to be in separate
packages. Indeed, a client package often contains an interface for another pack-
age to implement: the same notion of required interface that I discussed on
page 70.

Imagine that we want to provide some user interface (UI) controls to turn
things on and off. We want this to work with a lot of different things, such as
heaters and lights. The UI controls need to invoke methods on the heater, but we
don’t want the controls to have a dependency to the heater. We can avoid this
dependency by defining in the controls package an interface that is then imple-
mented by any class that wants to work with these controls, as in Figure 7.5. This
is an example of the pattern Separated Interface [Fowler, P of EAA].

Database
Gateway

Oracle Gateway
SQL Server

Gateway
Test Stub
Gateway

Application

Figure 7.4 A package implemented by other packages

WHERE TO FIND OUT MORE 95

When to Use Package Diagrams

I find package diagrams extremely useful on larger-scale systems to get a picture
of the dependencies between major elements of a system. These diagrams corre-
spond well to common programming structures. Plotting diagrams of packages
and dependencies helps you keep an application’s dependencies under control.

Package diagrams represent a compile-time grouping mechanism. For show-
ing how objects are composed at runtime, use a composite structure diagram
(page 135).

Where to Find Out More

The best discussion I know of packages and how to use them is [Martin]. Rob-
ert Martin has long had an almost pathological obsession with dependencies
and writes well about how to pay attention to dependencies so that you can
control and minimize them.

Control

Button

turnOn
turnOff
isOn
isOff

«interface»
OnOff

Furnace::Heater Lighting::Light

Check Box

Figure 7.5 Defining a required interface in a client package

This page intentionally left blank

97

Chapter 8

Deployment Diagrams

Deployment diagrams show a system’s physical layout, revealing which pieces
of software run on what pieces of hardware. Deployment diagrams are really
very simple; hence the short chapter.

Figure 8.1 is a simple example of a deployment diagram. The main items on
the diagram are nodes connected by communication paths. A node is something
that can host some software. Nodes come in two forms. A device is hardware, it
may be a computer or a simpler piece of hardware connected to a system. An
execution environment is software that itself hosts or contains other software,
examples are an operating system or a container process.

The nodes contain artifacts, which are the physical manifestations of soft-
ware: usually, files. These files might be executables (such as .exe files, binaries,
DLLs, JAR files, assemblies, or scripts), or data files, configuration files, HTML
documents, and so on. Listing an artifact within a node shows that the artifact
is deployed to that node in the running system.

You can show artifacts either as class boxes or by listing the name within a
node. If you show them as class boxes, you can add a document icon or the
«artifact» keyword. You can tag nodes or artifacts with tagged values to indi-
cate various interesting information about the node, such as vendor, operating
system, location, or anything else that takes your fancy.

Often, you’ll have multiple physical nodes carrying out the same logical task.
You can either show this with multiple node boxes or state the number as a
tagged value. In Figure 8.1, I used the tag number deployed to indicate three physi-
cal Web servers, but there’s no standard tag for this.

Artifacts are often the implementation of a component. To show this, you
can use a tagged value in the artifact box.

Communication paths between nodes indicate how things communicate.
You can label these paths with information about the communication protocols
that are used.

98 CHAPTER 8 DEPLOYMENT DIAGRAMS

When to Use Deployment Diagrams

Don’t let the brevity of this chapter make you think that deployment diagrams
shouldn’t be used. They are very handy in showing what is deployed where, so
any nontrivial deployment can make good use of them.

herculesClient.exe

Rich Client
{OS = Windows}

herculesWeb.war

Web server
{OS = Solaris}

{web server = apache}
{number deployed = 3}

Application Server

herculesBase.ear
herculesAR.ear
herculesAP.ear

EJB Container

browser

BrowserClient

http/Internet http/LAN

Java RMI/
LAN

Oracle DBMS

JDBC

device node

execution
environment node

deployed artifact

tagged value

communication path

JoveGL.exe
{vendor = romanSoft}

{component = General Ledger}

Figure 8.1 Example deployment diagram

99

Chapter 9

Use Cases

Use cases are a technique for capturing the functional requirements of a sys-
tem. Use cases work by describing the typical interactions between the users of
a system and the system itself, providing a narrative of how a system is used.

Rather than describe use cases head-on, I find it easier to sneak up on them
from behind and start by describing scenarios. A scenario is a sequence of steps
describing an interaction between a user and a system. So if we have a Web-
based on-line store, we might have a Buy a Product scenario that would say this:

The customer browses the catalog and adds desired items to the shopping
basket. When the customer wishes to pay, the customer describes the ship-
ping and credit card information and confirms the sale. The system checks
the authorization on the credit card and confirms the sale both immedi-
ately and with a follow-up e-mail.

This scenario is one thing that can happen. However, the credit card authori-
zation might fail, and this would be a separate scenario. In another case, you
may have a regular customer for whom you don’t need to capture the shipping
and credit card information, and this is a third scenario.

All these scenarios are different yet similar. The essence of their similarity is
that in all these three scenarios, the user has the same goal: to buy a product.
The user doesn’t always succeed, but the goal remains. This user goal is the key
to use cases: A use case is a set of scenarios tied together by a common user
goal.

In use case–speak, the users are referred to as actors. An actor is a role that a
user plays with respect to the system. Actors might include customer, customer
service rep, sales manager, and product analyst. Actors carry out use cases. A
single actor may perform many use cases; conversely, a use case may have sev-
eral actors performing it. Usually, you have many customers, so many people
can be the customer actor. Also, one person may act as more than one actor,

100 CHAPTER 9 USE CASES

such as a sales manager who does customer service rep tasks. An actor doesn’t
have to be human. If the system performs a service for another computer sys-
tem, that other system is an actor.

Actor isn’t really the right term; role would be much better. Apparently, there
was a mistranslation from Swedish, and actor is the term the use case commu-
nity uses.

Use cases are well known as an important part of the UML. However, the
surprise is that in many ways, the definition of use cases in the UML is rather
sparse. Nothing in the UML describes how you should capture the content of a
use case. What the UML describes is a use case diagram, which shows how use
cases relate to each other. But almost all the value of use cases lies in the con-
tent, and the diagram is of rather limited value.

Content of a Use Case

There is no standard way to write the content of a use case, and different for-
mats work well in different cases. Figure 9.1 shows a common style to use. You
begin by picking one of the scenarios as the main success scenario. You start the
body of the use case by writing the main success scenario as a sequence of num-
bered steps. You then take the other scenarios and write them as extensions,
describing them in terms of variations on the main success scenario. Extensions
can be successes—user achieves the goal, as in 3a—or failures, as in 6a.

Each use case has a primary actor, which calls on the system to deliver a ser-
vice. The primary actor is the actor with the goal the use case is trying to satisfy
and is usually, but not always, the initiator of the use case. There may be other
actors as well with which the system communicates while carrying out the use
case. These are known as secondary actors.

Each step in a use case is an element of the interaction between an actor and
the system. Each step should be a simple statement and should clearly show
who is carrying out the step. The step should show the intent of the actor, not
the mechanics of what the actor does. Consequently, you don’t describe the user
interface in the use case. Indeed, writing the use case usually precedes designing
the user interface.

An extension within the use case names a condition that results in different
interactions from those described in the main success scenario (MSS) and states
what those differences are. Start the extension by naming the step at which the
condition is detected and provide a short description of the condition. Follow the
condition with numbered steps in the same style as the main success scenario.

CONTENT OF A USE CASE 101

Finish these steps by describing where you return to the main success scenario, if
you do.

The use case structure is a great way to brainstorm alternatives to the main
success scenario. For each step, ask, How could this go differently? and in par-
ticular, What could go wrong? It’s usually best to brainstorm all the extension
conditions first, before you get bogged down working out the consequences.
You’ll probably think of more conditions this way, which translates to fewer
goofs that you have to pick up later.

A complicated step in a use case can be another use case. In UML terms, we
say that the first use case includes the second. There’s no standard way to show
an included use case in the text, but I find that underlining, which suggests a
hyperlink, works very nicely and in many tools really will be a hyperlink. Thus
in Figure 9.1, the first step includes the use case “browse catalog and select
items to buy.”

Included use cases can be useful for a complex step that would clutter the
main scenario or for steps that are repeated in several use cases. However, don’t
try to break down use cases into sub–use cases and subsub–use cases using
functional decomposition. Such a decomposition is a good way to waste a lot of
time.

Figure 9.1 Example use case text

Buy a Product

Goal Level: Sea Level

Main Success Scenario:
1. Customer browses catalog and selects items to buy
2. Customer goes to check out
3. Customer fills in shipping information (address; next-day or 3-day delivery)
4. System presents full pricing information, including shipping
5. Customer fills in credit card information
6. System authorizes purchase
7. System confirms sale immediately
8. System sends confirming e-mail to customer

Extensions:
3a: Customer is regular customer

.1: System displays current shipping, pricing, and billing information

.2: Customer may accept or override these defaults, returns to MSS at step 6
6a: System fails to authorize credit purchase

.1: Customer may reenter credit card information or may cancel

102 CHAPTER 9 USE CASES

As well as the steps in the scenarios, you can add some other common infor-
mation to a use case.

• A pre-condition describes what the system should ensure is true before the
system allows the use case to begin. This is useful for telling the program-
mers what conditions they don’t have to check for in their code.

• A guarantee describes what the system will ensure at the end of the use
case. Success guarantees hold after a successful scenario; minimal guaran-
tees hold after any scenario.

• A trigger specifies the event that gets the use case started.

When you’re considering adding elements, be skeptical. It’s better to do too
little than too much. Also, work hard to keep the use case brief and easy to
read. I’ve found that long, detailed use cases don’t get read, which rather
defeats the purpose.

The amount of detail you need in a use case depends on the amount of risk in
that use case. Often, you need details on only a few key use cases early on; oth-
ers can be fleshed out just before you implement them. You don’t have to write
all the detail down; verbal communication is often very effective, particularly
within an iterative cycle in which needs are quickly met by running code.

Use Case Diagrams

As I said earlier, the UML is silent on the content of a use case but does provide
a diagram format for showing them, as in Figure 9.2. Although the diagram is
sometimes useful, it isn’t mandatory. In your use case work, don’t put too much
effort into the diagram. Instead, concentrate on the textual content of the use
cases.

The best way to think of a use case diagram is that it’s a graphical table of
contents for the use case set. It’s also similar to the context diagram used in
structured methods, as it shows the system boundary and the interactions with
the outside world. The use case diagram shows the actors, the use cases, and the
relationships between them:

• Which actors carry out which use cases

• Which use cases include other use cases

The UML includes other relationships between use cases beyond the simple
includes, such as «extend». I strongly suggest that you ignore them. I’ve seen too

LEVELS OF USE CASES 103

many situations in which teams can get terribly hung up on when to use differ-
ent use case relationships, and such energy is wasted. Instead, concentrate on the
textual description of a use case; that’s where the real value of the technique lies.

Levels of Use Cases

A common problem with use cases is that by focusing on the interaction
between a user and the system, you can neglect situations in which a change to
a business process may be the best way to deal with the problem. Often, you
hear people talk about system use cases and business use cases. The terms are
not precise, but in general, a system use case is an interaction with the software,
whereas a business use case discusses how a business responds to a customer or
an event.

[Cockburn, use cases] suggests a scheme of levels of use cases. The core use
cases are at “sea level.” Sea-level use cases typically represent a discrete interac-
tion between a primary actor and the system. Such use cases will deliver some-
thing of value to the primary actor and usually take from a couple of minutes to
half an hour for the primary actor to complete. Use cases that are there only
because they are included by sea-level use cases are fish level. Higher, kite-level

«include»

«include»

include

use case

actor

system
boundary

Update
Accounts

Value
Deal

Capture
Deal

Set
Limits

Price
Deal

Analyze
Risk

Accounting
System

Salesperson

Trading
Manager

Trader

Figure 9.2 Use case diagram

104 CHAPTER 9 USE CASES

use cases show how the sea-level use cases fit into wider business interactions.
Kite-level use cases are usually business use cases, whereas sea and fish levels
are system use cases. You should have most of your use cases at the sea level. I
prefer to indicate the level at the top of the use case, as in Figure 9.1.

Use Cases and Features (or Stories)

Many approaches use features of a system—Extreme Programming calls them
user stories—to help describe requirements. A common question is how fea-
tures and use cases interrelate.

Features are a good way of chunking up a system for planning an iterative
project, whereby each iteration delivers a number of features. Use cases provide
a narrative of how the actors use the system. Hence, although both techniques
describe requirements, their purposes are different.

Although you can go directly to describing features, many people find it
helpful to develop use cases first and then generate a list of features. A feature
may be a whole use case, a scenario in a use case, a step in a use case, or some
variant behavior, such as adding yet another depreciation method for your asset
valuations, that doesn’t show up in a use case narrative. Usually, features end
up being more fine grained than use cases.

When to Use Use Cases

Use cases are a valuable tool to help understand the functional requirements of
a system. A first pass at use cases should be made early on. More detailed ver-
sions of use cases should be worked just prior to developing that use case.

It is important to remember that use cases represent an external view of the
system. As such, don’t expect any correlations between use cases and the classes
inside the system.

The more I see of use cases, the less valuable the use case diagram seems to
be. With use cases, concentrate your energy on their text rather than on the dia-
gram. Despite the fact that the UML has nothing to say about the use case text,
it is the text that contains all the value in the technique.

A big danger of use cases is that people make them too complicated and get
stuck. Usually, you’ll get less hurt by doing too little than by doing too much. A
couple of pages per use case is just fine for most cases. If you have too little, at

WHERE TO FIND OUT MORE 105

least you’ll have a short, readable document that’s a starting point for ques-
tions. If you have too much, hardly anyone will read and understand it.

Where to Find Out More

Use cases were originally popularized by Ivar Jacobson in [Jacobson, OOSE].
Although use cases have been around for a while, there’s been little standard-

ization on their use. The UML is silent on the important contents of a use case
and has standardized only the much less important diagrams. As a result, you
can find a divergent range of opinions on use cases.

In the last few years, however, [Cockburn, use cases] has become the stan-
dard book on the subject. In this chapter, I’ve followed the terminology and
advice of that book for the excellent reason that when we’ve disagreed in the
past, I’ve usually ended up agreeing with Alistair Cockburn in the end. He also
maintains a Web site at http://usecases.org. [Constantine and Lockwood] pro-
vides a convincing process for deriving user interfaces from use cases; also see
http://foruse.com.

../../../../../usecases.org/default.htm
../../../../../foruse.com/default.htm

This page intentionally left blank

107

Chapter 10

State Machine Diagrams

State machine diagrams are a familiar technique to describe the behavior of a
system. Various forms of state diagrams have been around since the 1960s and
the earliest object-oriented techniques adopted them to show behavior. In
object-oriented approaches, you draw a state machine diagram for a single class
to show the lifetime behavior of a single object.

Whenever people write about state machines, the examples are inevitably
cruise controls or vending machines. As I’m a little bored with them, I decided
to use a controller for a secret panel in a Gothic castle. In this castle, I want to
keep my valuables in a safe that’s hard to find. So to reveal the lock to the safe,
I have to remove a strategic candle from its holder, but this will reveal the lock
only while the door is closed. Once I can see the lock, I can insert my key to
open the safe. For extra safety, I make sure that I can open the safe only if I
replace the candle first. If a thief neglects this precaution, I’ll unleash a nasty
monster to devour him.

Figure 10.1 shows a state machine diagram of the controller class that directs
my unusual security system.The state diagram starts with the state of the con-
troller object when it’s created: in Figure 10.1, the Wait state. The diagram indi-
cates this with initial pseudostate, which is not a state but has an arrow that
points to the initial state.

The diagram shows that the controller can be in three states: Wait, Lock, and
Open. The diagram also gives the rules by which the controller changes from
state to state. These rules are in the form of transitions: the lines that connect
the states.

The transition indicates a movement from one state to another. Each transition
has a label that comes in three parts: trigger-signature [guard]/activity. All the parts
are optional. The trigger-signature is usually a single event that triggers a potential
change of state. The guard, if present, is a Boolean condition that must be true for
the transition to be taken. The activity is some behavior that’s executed during the
transition. It may be any behavioral expression. The full form of a trigger-signature

108 CHAPTER 10 STATE MACHINE DIAGRAMS

may include multiple events and parameters. So in Figure 10.1, you read the out-
ward transition from the Wait state as “In the Wait state if the candle is removed
providing the door is closed, you reveal the lock and move to the Lock state.”

All three parts to a transition are optional. A missing activity indicates that
you don’t do anything during the transition. A missing guard indicates that you
always take the transition if the event occurs. A missing trigger-signature is rare
but does occur. It indicates that you take the transition immediately, which you
see mostly with activity states, which I’ll come to in a moment.

When an event occurs in a state, you can take only one transition out of it.
So if you use multiple transitions with the same event, as in the Lock state of
Figure 10.1, the guards must be mutually exclusive. If an event occurs and no
transition is valid—for example, a safe-closed event in the Wait state or a candle-
removed event with the door open—the event is ignored.

The final state indicates that the state machine is completed, implying the
deletion of the controller object. Thus, if someone should be so careless as to
fall for my trap, the controller object terminates, so I would need to put the rab-
bit in its cage, mop the floor, and reboot the system.

Remember that state machines can show only what the object directly
observes or activates. So although you might expect me to add or remove things

Lock
candle removed [door closed] / reveal lock

key turned [candle in] / open safe

key turned [candle out] / release killer rabbit

safe closed

state

initial pseudostate

final state

transition

Open

Wait

Figure 10.1 A simple state machine diagram

ACTIVITY STATES 109

from the safe when it’s open, I don’t put that on the state diagram, because the
controller cannot tell.

When developers talk about objects, they often refer to the state of the
objects to mean the combination of all the data in the fields of the objects.
However, the state in a state machine diagram is a more abstract notion of
state; essentially, different states imply a different way of reacting to events.

Internal Activities

States can react to events without transition, using internal activities: putting
the event, guard, and activity inside the state box itself.

Figure 10.2 shows a state with internal activities of the character and help
events, as you might find on a UI text field. An internal activity is similar to a
self-transition: a transition that loops back to the same state. The syntax for
internal activities follows the same logic for event, guard, and procedure.

Figure 10.2 also shows two special activities: the entry and exit activities. The
entry activity is executed whenever you enter a state; the exit activity, whenever
you leave. However, internal activities do not trigger the entry and exit activities;
that is the difference between internal activities and self-transitions.

Activity States

In the states I’ve described so far, the object is quiet and waiting for the next
event before it does something. However, you can have states in which the
object is doing some ongoing work.

entry/highlight all
exit/ update field
character/ handle character
help [verbose]/ open help page
help [quiet]/ update status bar

Typing

Figure 10.2 Internal events shown with the typing state of a text field

110 CHAPTER 10 STATE MACHINE DIAGRAMS

The Searching state in Figure 10.3 is such an activity state: The ongoing
activity is marked with the do/; hence the term do-activity. Once the search is
completed, any transitions without an event, such as the one to display new
hardware, are taken. If the cancel event occurs during the activity, the do-activity
is unceremoniously halted, and we go back to the Update Hardware Window
state.

Both do-activities and regular activities represent carrying out some behavior.
The critical difference between the two is that regular activities occur “instanta-
neously” and cannot be interrupted by regular events, while do-activities can
take finite time and can be interrupted, as in Figure 10.3. Instantaneous will
mean different things for different system; for hard real-time systems, it might be
a few machine instructions, but for desktop software might be several seconds.

UML 1 used the term action for regular activities and used activity only for
do-activities.

Superstates

Often, you’ll find that several states share common transitions and internal
activities. In these cases, you can make them substates and move the shared
behavior into a superstate, as in Figure 10.4. Without the superstate, you would
have to draw a cancel transition for all three states within the Enter Connection
Details state.

search

cancel

Display New
Hardware
Window

activity

do/ search for new hardware

SearchingUpdate
Hardware
Window

Figure 10.3 A state with an activity

IMPLEMENTING STATE DIAGRAMS 111

Concurrent States

States can be broken into several orthogonal state diagrams that run concur-
rently. Figure 10.5 shows a pathetically simple alarm clock that can play either
CDs or the radio and show either the current time or the alarm time.

The choices CD/radio and current/alarm time are orthogonal choices. If you
wanted to represent this with a nonorthogonal state diagram, you would need a
messy diagram that would get very much out of hand should you want more
states. Separating out the two areas of behavior into separate state diagrams
makes it much clearer.

Figure 10.5 also includes a history pseudostate. This indicates that when the
clock is switched on, the radio/CD choice goes back to the state the clock was
in when it was turned off. The arrow from the history pseudostate indicates
what state to be in on the first time when there is no history.

Implementing State Diagrams

A state diagram can be implemented in three main ways: nested switch, the
State pattern, and state tables. The most direct approach to handling a state

Enter Phone
Number Enter Name

next

back

Enter Connection Details

cancel

new

Show Connections

Choose Shared
or Solo

next

back

save

Figure 10.4 Superstate with nested substates

112 CHAPTER 10 STATE MACHINE DIAGRAMS

diagram is a nested switch statement, such as Figure 10.6. Although it’s direct,
it’s long-winded, even for this simple case. It’s also very easy for this approach
to get out of control, so I don’t like using it even for simple cases.

The State pattern [Gang of Four] creates a hierarchy of state classes to handle
behavior of the states. Each state in the diagram has one state subclass. The
controller has methods for each event, which simply forwards to the state class.
The state diagram of Figure 10.1 would yield an implementation indicated by
the classes of Figure 10.7.

The top of the hierarchy is an abstract class that implements all the event-
handling methods to do nothing. For each concrete state, you simply override
the specific event methods for which that state has transitions.

The state table approach captures the state diagram information as data. So
Figure 10.1 might end up represented in a table like Table 10.1. We then build
either an interpreter that uses the state table at runtime or a code generator that
generates classes based on the state table.

Obviously, the state table is more work to do once, but then you can use it
every time you have a state problem to hold. A runtime state table can also be

concurrent boundary

history pseudostate

Off

Playing Radio Playing CD

Display Current
Time

Display Alarm
Time

On

time

alarm

Radio CD

H

offon

Figure 10.5 Concurrent orthogonal states

IMPLEMENTING STATE DIAGRAMS 113

modified without recompilation, which in some contexts is quite handy. The
state pattern is easier to put together when you need it, and although it needs a
new class for each state, it’s a small amount of code to write in each case.

These implementations are pretty minimal, but they should give you an idea
of how to go about implementing state diagrams. In each case, implementing
state models leads to very boilerplate code, so it’s usually best to use some form
of code generation to do it.

Figure 10.6 A C# nested switch to handle the state transition from Figure 10.1

 public void HandleEvent (PanelEvent anEvent) {
 switch (CurrentState) {
 case PanelState.Open :
 switch (anEvent) {
 case PanelEvent.SafeClosed :
 CurrentState = PanelState.Wait;
 break;
 }
 break;
 case PanelState.Wait :
 switch (anEvent) {
 case PanelEvent.CandleRemoved :
 if (isDoorClosed) {
 RevealLock();
 CurrentState = PanelState.Lock;
 }
 break;
 }
 break;
 case PanelState.Lock :
 switch (anEvent) {
 case PanelEvent.KeyTurned :
 if (isCandleIn) {
 OpenSafe();
 CurrentState = PanelState.Open;
 } else {
 ReleaseKillerRabbit();
 CurrentState = PanelState.Final;
 }
 break;
 }
 break;
 }
 }
 }

114 CHAPTER 10 STATE MACHINE DIAGRAMS

When to Use State Diagrams

State diagrams are good at describing the behavior of an object across several
use cases. State diagrams are not very good at describing behavior that involves
a number of objects collaborating. As such, it is useful to combine state dia-
grams with other techniques. For instance, interaction diagrams (see Chapter 4)
are good at describing the behavior of several objects in a single use case, and
activity diagrams (see Chapter 11) are good at showing the general sequence of
activities for several objects and use cases.

Not everyone finds state diagrams natural. Keep an eye on how people are
working with them. It may be that your team does not find state diagrams use-

changeStateTo (SecretPanelState)
handleCandleRemoved
handleKeyTurned
handleSafeClosed

Secret Panel Controller

handleCandleRemoved
handleKeyTurned
handleSafeClosed

Secret Panel State

handleCandleRemoved

Wait State

handleKeyTurned

Lock State

handleSafeClosed

Open State

state 1

do nothing

if (isDoorClosed) {
revealLock()
changeStateTo (LockState)

}

state.handleCandleRemoved

Figure 10.7 A State pattern implementation for Figure 10.1

Table 10.1 A State Table for Figure 10.1

Source State Target State Event Guard Procedure

Wait Lock Candle removed Door closed Reveal lock

Lock Open Key turned Candle in Open safe

Lock Final Key turned Candle out Release killer rabbit

Open Wait Safe closed

WHERE TO FIND OUT MORE 115

ful to its way of working. That is not a big problem; as always, you should
remember to use the mix of techniques that works for you.

If you do use state diagrams, don’t try to draw them for every class in the
system. Although this approach is often used by high-ceremony completists, it
is almost always a waste of effort. Use state diagrams only for those classes that
exhibit interesting behavior, where building the state diagram helps you under-
stand what is going on. Many people find that UI and control objects have the
kind of behavior that is useful to depict with a state diagram.

Where to Find Out More

Both the User Guide [Booch, UML user] and the Reference Manual [Rum-
baugh, UML Reference] have more information on state diagrams. Real-time
designers tend to use state models a lot, so it’s no surprise that [Douglass]) has a
lot to say about state diagrams, including information on how to implement
them. [Martin] contains a very good chapter on the various ways of implement-
ing state diagrams.

This page intentionally left blank

117

Chapter 11

Activity Diagrams

Activity diagrams are a technique to describe procedural logic, business pro-
cess, and work flow. In many ways, they play a role similar to flowcharts, but
the principal difference between them and flowchart notation is that they sup-
port parallel behavior.

Activity diagrams have seen some of the biggest changes over the versions of
the UML, so they have, not surprisingly, been significantly extended and altered
again for UML 2. In UML 1, activity diagrams were seen as special cases of
state diagrams. This caused a lot of problems for people modeling work flows,
which activity diagrams are well suited for. In UML 2, that tie was removed.

Figure 11.1 shows a simple example of an activity diagram. We begin at the
initial node action and then do the action Receive Order. Once that is done, we
encounter a fork. A fork has one incoming flow and several outgoing concur-
rent flows.

Figure 11.1 says that Fill Order, Send Invoice, and the subsequent actions
occur in parallel. Essentially, this means that the sequence between them is irrel-
evant. I could fill the order, send the invoice, deliver, and then receive payment;
or, I could send the invoice, receive the payment, fill the order, and then deliver:
You get the picture.

I can also do these actions by interleaving. I grab the first line item from
stores, type up the invoice, grab the second line item, put the invoice in an enve-
lope, and so forth. Or, I could do some of this simultaneously: type up the
invoice with one hand while I reach into my stores with another. Any of these
sequences is correct, according to the diagram.

The activity diagram allows whoever is doing the process to choose the order
in which to do things. In other words, the diagram merely states the essential
sequencing rules I have to follow. This is important for business modeling

118 CHAPTER 11 ACTIVITY DIAGRAMS

because processes often occur in parallel. It’s also useful for concurrent algo-
rithms, in which independent threads can do things in parallel.

When you have parallelism, you’ll need to synchronize. We don’t close the
order until it is delivered and paid for. We show this with the join before the Close
Order action. With a join, the outgoing flow is taken only when all the incom-

[priority order]

[else]

Fill Order
Send Invoice

Receive
Payment

initial node

Regular
Delivery

Overnight
Delivery

action
fork

join

merge

decision

activity final

flow/edge

Receive
Order

Close
Order

Figure 11.1 A simple activity diagram

DECOMPOSING AN ACTION 119

ing flows reach the join. So you can close the order only when you have both
received the payment and delivered.

UML 1 had particular rules for balancing the forks and joins, as activity dia-
grams were special cases of state diagrams. With UML 2, such balancing is no
longer needed.

You’ll notice that the nodes on an activity diagram are called actions, not
activities. Strictly, an activity refers to a sequence of actions, so the diagram
shows an activity that’s made up of actions.

Conditional behavior is delineated by decisions and merges. A decision,
called branch in UML 1, has a single incoming flow and several guarded out-
bound flows. Each outbound flow has a guard: a Boolean condition placed
inside square brackets. Each time you reach a decision, you can take only one
of the outbound flows, so the guards should be mutually exclusive. Using [else]
as a guard indicates that the [else] flow should be used if all the other guards on
the decision are false.

In Figure 11.1, after an order is filled, there is a decision. If you have a rush
order, you do an Overnight Delivery; otherwise, you do a Regular Delivery.

A merge has multiple input flows and a single output. A merge marks the end
of conditional behavior started by a decision.

In my diagrams, each action has a single flow coming in and a single flow
going out. In UML 1, multiple incoming flows had an implicit merge. That is,
your action would execute if any flow triggered. In UML 2, this has changed so
there’s an implicit join instead; thus, the action executes only if all flows trigger.
As a result of this change, I recommend that you use only a single incoming and
outgoing flow to an action and show all joins and merges explicitly; that will
avoid confusion.

Decomposing an Action

Actions can be decomposed into subactivities. I can take the delivery logic of
Figure 11.1 and define it as its own activity (Figure 11.2). Then I can call it as
an action (Figure 11.3 on page 121).

Actions can be implemented either as subactivities or as methods on
classes. You can show a subactivity by using the rake symbol. You can show a
call on a method with syntax class-name::method-name. You can also write a code
fragment into the action symbol if the invoked behavior isn’t a single method
call.

120 CHAPTER 11 ACTIVITY DIAGRAMS

Partitions

Activity diagrams tell you what happens, but they do not tell you who does
what. In programming, this means that the diagram does not convey which
class is responsible for each action. In business process modeling, this does not
convey which part of an organization carries out which action. This isn’t neces-
sarily a problem; often, it makes sense to concentrate on what gets done rather
than on who does what parts of the behavior.

If you want to show who does what, you can divide an activity diagram into
partitions, which show which actions one class or organization unit carries out.
Figure 11.4 (on page 122) shows a simple example of this, showing how the
actions involved in order processing can be separated among various departments.

The partitioning of Figure 11.4 is a simple one-dimensional partitioning.
This style is often referred to as swim lanes, for obvious reasons and was the
only form used in UML 1.x. In UML 2, you can use a two-dimensional grid, so
the swimming metaphor no longer holds water. You can also take each dimen-
sion and divide the rows or columns hierarchically.

Overnight
Delivery

Regular Delivery

[Rush Order]

[else]

Deliver Order

input
parameter

output
parameter

activity name

OrderOrder

Figure 11.2 A subsidiary activity diagram

SIGNALS 121

Signals

In the simple example of Figure 11.1, activity diagrams have a clearly defined
start point, which corresponds to an invocation of a program or routine.
Actions can also respond to signals.

A time signal occurs because of the passage of time. Such signals might indi-
cate the end of a month in a financial period or each microsecond in a real-time
controller.

Receive
Order

Send Invoice
(Order::sendInvoice)

Deliver
Order

rake indicates
sub activity

diagram

method
invocation

Receive
Payment

Fill Order

Close
Order

Figure 11.3 The activity of Figure 11.1 modified to invoke the activity in Figure 11.2

122 CHAPTER 11 ACTIVITY DIAGRAMS

Figure 11.5 shows an activity that listens for two signals. A signal indicates
that the activity receives an event from an outside process. This indicates that
the activity constantly listens for those signals, and the diagram defines how the
activity reacts.

In the case of Figure 11.5, 2 hours before my flight leaves, I need to start
packing my bags. If I’m quick to pack them, I still cannot leave until the taxi
arrives. If the taxi arrives before my bags are packed, it has to wait for me to
finish before we go.

Send
Invoice

Fulfillment Customer Service Finance

Receive
Order

Close
Order

Deliver
Order

Receive
Payment

Fill Order

Figure 11.4 Partitions on an activity diagram

SIGNALS 123

As well as accepting signals, we can send them. This is useful when we have
to send a message and then wait for a reply before we can continue. Figure 11.6
shows a good example of this with a common idiom of timing out. Note that
the two flows are in a race: The first to reach the final state will win and termi-
nate the other flow. I’m using a single activity final here. This means the same as
two separate icons (i.e., there’s no implicit join for activity finals).

Although accepts are usually just waiting for an external event, we can also
show a flow going into them. That indicates that we don’t start listening until
the flow triggers the accept.

Two hours
before flight

Pack Bags

Leave for Airport

time signal

Taxi
Arrives

accept signal

Figure 11.5 Signals on an activity diagram

Reserve Itinerary

Send Itinerary

Itinerary
Confirmed

Book Itinerary

Cancel Itinerary
send signal

accept signal

Wait 48 hours

Figure 11.6 Sending and receiving signals

124 CHAPTER 11 ACTIVITY DIAGRAMS

Tokens

If you’re sufficiently brave to venture into the demonic depths of the UML spec-
ification, you’ll find that the activity section of the specification talks a lot about
tokens and their production and consumption. The initial node creates a token,
which then passes to the next action, which executes and then passes the token
to the next. At a fork, one token comes in, and the fork produces a token on
each of its outward flows. Conversely, on a join, as each inbound token arrives,
nothing happens until all the tokens appear at the join; then a token is pro-
duced on the outward flow.

You can visualize the tokens with coins or counters moving across the dia-
gram. As you get to more complicated examples of activity diagrams, tokens
often make it easier to visualize things.

Flows and Edges

UML 2 uses the terms flow and edge synonymously to describe the connections
between two actions. The simplest kind of edge is the simple arrow between
two actions. You can give an edge a name if you like, but most of the time, a
simple arrow will suffice.

If you’re having difficulty routing lines, you can use connectors, which sim-
ply save you having to draw a line the whole distance. When you use connec-
tors, you must use them in pairs: one with incoming flow, one with an outgoing
flow, and both with the same label. I tend to avoid using connectors if at all
possible, as they break up the visualization of the flow of control.

The simplest edges pass a token that has no meaning other than to control
the flow. However, you can also pass objects along edges; the objects then play
the role of tokens, as well as carry data. If you are passing an object along the
edge, you can show that by putting a class box on the edge, or you can use pins
on the actions, although pins imply some more subtleties that I’ll describe
shortly.

All the styles shown in Figure 11.7 are equivalent; you should use whichever
conveys best what you are trying to communicate. Most of the time, the simple
arrow is quite enough.

PINS AND TRANSFORMATIONS 125

Pins and Transformations

Actions can have parameters, just as methods do. You don’t need to show infor-
mation about parameters on the activity diagram, but if you wish, you can
show them with pins. If you’re decomposing an action, pins correspond to the
parameter boxes on the decomposed diagram.

When you’re drawing an activity diagram strictly, you have to ensure that
the output parameters of an outbound action match the input parameters of
another. If they don’t match, you can indicate a transformation (Figure 11.8) to
get from one to another. The transformation must be an expression that’s free
of side effects: essentially, a query on the output pin parameter that supplies an
object of the right type for the input pin.

You don’t have to show pins on an activity diagram. Pins are best when you
want to look at the data needed and produced by the various actions. In busi-
ness process modeling, you can use pins to show the resources produced and
consumed by actions.

If you use pins, it’s safe to show multiple flows coming into the same action.
The pin notation reinforces the implicit join, and UML 1 didn’t have pins, so
there’s no confusion with the earlier assumptions.

Order

Order

Order

connector

object node

pin

Make
Payment

Make
Payment

Make
Payment

Make
Payment

Receive
Invoice

Receive
Invoice

Receive
Invoice

Receive
Invoice

AA

Figure 11.7 Four ways of showing an edge

126 CHAPTER 11 ACTIVITY DIAGRAMS

Expansion Regions

With activity diagrams, you often run into situations in which one action’s out-
put triggers multiple invocations of another action. There are several ways to
show this, but the best way is to use an expansion region. An expansion region
marks an activity diagram area where actions occur once for each item in a
collection.

In Figure 11.9, the Choose Topics action generates a list of topics as its out-
put. Each element of this list then becomes a token for input to the Write Article
action. Similarly, each Review Article action generates a single article that’s
added to the output list of the expansion region. When all the tokens in the
expansion region end up in the output collection, the region generates a single
token for the list that’s passed to Publish Newsletter.

In this case, you have the same number of items in the output collection as
you do in the input collection. However, you may have fewer, in which case the
expansion region acts as a filter.

In Figure 11.9, all the articles are written and reviewed in parallel, which is
marked by the «concurrent» keyword. You can also have an iterative expansion
region. Iterative regions must fully process each input element one at a time.

If you have only a single action that needs multiple invocation, you use the
shorthand of Figure 11.10. The shorthand assumes concurrent expansion, as

Appointment

Cancel
Appointment

Notify Patient

PatientMessage

«transformation»
appointment.patient

«transformation»
appointment.cancellationNotice

pin for parameter

transformation
expression

Figure 11.8 Transformation on a flow

FLOW FINAL 127

that’s the most common. This notation corresponds to the UML 1 concept of
dynamic concurrency.

Flow Final

Once you get multiple tokens, as in an expansion region, you often get flows
that stop even when the activity as a whole doesn’t end. A flow final indicates
the end of one particular flow, without terminating the whole activity.

Figure 11.11 shows this by modifying the example of Figure 11.9 to allow
articles to be rejected. If an article is rejected, the token is destroyed by the flow
final. Unlike an activity final, the rest of the activity can continue. This
approach allows expansion regions to act as filters, whereby the output collec-
tion is smaller than the input collection.

Choose Topics

Write Article Review Article
Publish

Newsletter

«concurrent»

list of topics

expansion region

keyword

list box pin

Figure 11.9 Expansion region

Publish
Newsletter

Prepare
Article

Choose
Topics

Figure 11.10 Shorthand for a single action in an expansion region

128 CHAPTER 11 ACTIVITY DIAGRAMS

Join Specifications

By default, a join lets execution pass on its outward flow when all its input flows
have arrived at the join. (Or in more formal speak, it emits a token on its output
flow when a token has arrived on each input flow.) In some cases, particularly
when you have a flow with multiple tokens, it’s useful to have a more involved
rule.

A join specification is a Boolean expression attached to a join. Each time a
token arrives at the join, the join specification is evaluated and if true, an out-
put token is emitted. So in Figure 11.12, whenever I select a drink or insert a
coin, the machine evaluates the join specification. The machine slakes my thirst
only if I’ve put in enough money. If, as in this case, you want to indicate that
you have received a token on each input flow, you label the flows and include
them in the join specification.

flow final

Choose Topics

Write Article Review Article

Publish
Newsletter

«concurrent»

[accept]

list of topics

[reject]

Figure 11.11 Flow finals in an activity

WHEN TO USE ACTIVITY DIAGRAMS 129

And There’s More

I should stress that this chapter only scratches the surface on activity diagrams.
As with so much of the UML, you could write a whole book on this one tech-
nique alone. Indeed, I think that activity diagrams would make a very suitable
topic for a book that really dug into the notation and how to use it.

The vital question is how widely they get used. Activity diagrams aren’t the
most widely used UML technique at the moment, and their flow-modeling pro-
genitors weren’t very popular either. Diagrammatic techniques haven’t yet
caught on much for describing behavior in this kind of way. On the other hand,
there are signs in a number of communities of a pent-up demand that a stan-
dard technique will help to satisfy.

When to Use Activity Diagrams

The great strength of activity diagrams lies in the fact that they support and
encourage parallel behavior. This makes them a great tool for work flow and
process modeling, and indeed much of the push in UML 2 has come from people
involved in work flow.

You can also use an activity diagram as a UML-compliant flowchart. Although
this allows you to do flowcharts in a way that sticks with the UML, it’s hardly
very exciting. In principle, you can take advantages of the forks and joins to
describe parallel algorithms for concurrent programs. Although I don’t travel in

Dispense
Drink

Select Drink

join specification

Insert Coin
{joinSpec = A and B and
value of inserted coins >= price of selected drink}

A

B

Figure 11.12 Join specification

130 CHAPTER 11 ACTIVITY DIAGRAMS

concurrent circles that much, I haven’t seen much evidence of people using them
there. I think the reason is that most of the complexity of concurrent program-
ming is in avoiding contention on data, and activity diagrams don’t help much
with that.

The main strength of doing this may come with people using UML as a pro-
gramming language. In this case, activity diagrams represent an important tech-
nique to represent behavioral logic.

I’ve often seen activity diagrams used to describe a use case. The danger of
this approach is that often, domain experts don’t follow them easily. If so, you’d
be better off with the usual textual form.

Where to Find Out More

Although activity diagrams have always been rather complicated and are even
more so with UML 2, there hasn’t been a good book that describes them in
depth. I hope this gap will get filled someday.

Various flow-oriented techniques are similar in style to activity diagrams.
One of the better known—but hardly well known—is Petri Nets, for which
http://www.daimi.au.dk/PetriNets/ is a good Web site.

../../../../../www.daimi.au.dk/PetriNets/default.htm

131

Chapter 12

Communication Diagrams

Communication diagrams, a kind of interaction diagram, emphasize the data
links between the various participants in the interaction. Instead of drawing
each participant as a lifeline and showing the sequence of messages by vertical
direction as the sequence diagram does, the communication diagram allows free
placement of participants, allows you to draw links to show how the partici-
pants connect, and use numbering to show the sequence of messages.

In UML 1.x, these diagrams were called collaboration diagrams. This name
stuck well, and I suspect that it will be a while before people get used to the new
name. (These are different from Collaborations [page 143]; hence the name
change.)

Figure 12.1 shows a communication diagram for the same centralized con-
trol interaction as in Figure 4.1. With a communication diagram, we can show
how the participants are linked together.

As well as showing links that are instances of associations, we can also show
transient links, which arise only the context of the interaction. In this case, the
«local» link from Order to Product is a local variable; other transient links are
«parameter» and «global». These keywords were used in UML 1 but are missing
from UML 2. Because they are useful, I expect them to stay around in conven-
tional use.

The numbering style of Figure 12.1 is straightforward and commonly used,
but actually isn’t legal UML. To be kosher UML, you have to use a nested deci-
mal numbering scheme, as in Figure 12.2.

The reason for the nested decimal numbers is to resolve ambiguity with
self-calls. In Figure 4.1, you can clearly see that getDiscountInfo is called within
the method calculateDiscount. With the flat numbering of Figure 12.1, however,
you can’t tell whether getDiscountInfo is called within calculateDiscount or within
the overall calculatePrice method. The nested numbering scheme resolves this
problem.

Despite its illegality, many people prefer a flat numbering scheme. The nested
numbers can get very tangled, particularly as calls get rather nested, leading to

132 CHAPTER 12 COMMUNICATION DIAGRAMS

such sequence numbers as 1.1.1.2.1.1. In these cases, the cure for ambiguity can
be worse than the disease.

As well as numbers, you may also see letters on messages; these letters indi-
cate different threads of control. So messages A5 and B2 would be in different
threads; messages 1a1 and 1b1 would be different threads concurrently nested

an Order

an Order Line a Product

a Customer

2: getQuantity()
3: getProduct ()

5: calculateBasePrice ()
6: calculateDiscounts()

7: getDiscountInfo

self link

transient link
type

4: getPricingDetails

«local»

1: calculatePrice

!
non-

normative

Figure 12.1 Communication diagram for centralized control

an Order

an Order Line a Product

a Customer

1: calculatePrice

1.1: getQuantity()
1.2: getProduct ()

1.4: calculateBasePrice ()
1.5: calculateDiscounts()

1.5.1: getDiscountInfo

1.3: getPricingDetails

Figure 12.2 Communication diagram with nested decimal numbering

WHEN TO USE COMMUNICATION DIAGRAMS 133

within message 1. You also see thread letters on sequence diagrams, although
this doesn’t convey the concurrency visually.

Communication diagrams don’t have any precise notation for control logic.
They do allow you to use iteration markers and guards (page 59), but they
don’t allow you to fully specify control logic. There is no special notation for
creating or deleting objects, but the «create» and «delete» keywords are common
conventions.

When to Use Communication Diagrams

The main question with communication diagrams is when to use them rather
than the more common sequence diagrams. A strong part of the decision is per-
sonal preference: Some people like one over the other. Often, that drives the
choice more than anything else. On the whole, most people seem to prefer
sequence diagrams, and for once, I’m with the majority.

A more rational approach says that sequence diagrams are better when you
want to emphasize the sequence of calls and that communication diagrams are
better when you want to emphasize the links. Many people find that communi-
cation diagrams are easier to alter on a whiteboard, so they are a good approach
for exploring alternatives, although in those cases, I often prefer CRC cards.

This page intentionally left blank

135

Chapter 13

Composite Structures

One of the most significant new features in UML 2 is the ability to hierarchi-
cally decompose a class into an internal structure. This allows you to take a
complex object and break it down into parts.

Figure 13.1 shows a TV Viewer class with its provided and required inter-
faces (page 69). I’ve shown this in two ways: using the ball-and-socket notation
and listing them internally.

Figure 13.2 shows how this class is decomposed internally into two parts
and which parts support and require the different interfaces. Each part is
named in the form name : class, with both elements individually optional. Parts
are not instance specifications, so they are bolded rather than underlined.

You can show how many instances of a part are present. Figure 13.2 says
that each TV Viewer contains one generator part and one controls part.

To show a part implementing an interface, you draw a delegation connector
from that interface. Similarly, to show that a part needs an interface, you show
a delegation connector to that interface. You can also show connectors between
parts with either a simple line, as I’ve done here, or with ball-and-socket nota-
tion (page 140).

You can add ports (Figure 13.3) to the external structure. Ports allow you to
group the required and provided interfaces into logical interactions that a com-
ponent has with the outside world.

136 CHAPTER 13 COMPOSITE STRUCTURES

TV Viewer

TV control APITV control UI

tuning

«provided interfaces»
TV control UI
TV control API
«required interfaces»
tuning
display
picture stream

TV Viewer

display

picture stream

Figure 13.1 Two ways of showing a TV viewer and its interfaces

:Generator [1]

TV Viewer

TV control UI

TV control API

controls :
TVPresenter

tuning picture stream

display

delegating connector
connector

1

multiplicity

part

Figure 13.2 Internal view of a component (example suggested by Jim Rumbaugh)

WHEN TO USE COMPOSITE STRUCTURES 137

When to Use Composite Structures

Composite structures are new to UML 2, although some older methods had
some similar ideas. A good way of thinking about the difference between pack-
ages and composite structures is that packages are a compile-time grouping,
while composite structures show runtime groupings. As such, they are a natural
fit for showing components and how they are broken into parts; hence, much of
this notation is used in component diagrams.

Because composite structures are new to the UML, it’s too early to tell how
effective they will turn out in practice; many members of the UML committee
think that these diagrams will become a very valuable addition.

TV Viewer

TV control API

tuner

API

windowing

TV control UI

tuning

picture stream

display

port

Figure 13.3 A component with multiple ports

This page intentionally left blank

139

Chapter 14

Component Diagrams

A debate that’s always ranged large in the OO community is what the differ-
ence is between a component and any regular class. This is not a debate that I
want to settle here, but I can show you the notation the UML uses to distin-
guish between them.

UML 1 had a distinctive symbol for a component (Figure 14.1). UML 2
removed that icon but allows you to annotate a class box with a similar-looking
icon. Alternatively, you can use the «component» keyword.

Other than the icon, components don’t introduce any notation that we haven’t
already seen. Components are connected through implemented and required
interfaces and often use the notations from Composite Structures that we saw in
Chapter 13.

Figure 14.2 shows an example component diagram. In this example sales
tills connect to the sales servers component using a sales message interface via a
message queue. The queue supplies both the sales message interface to talk with
the till and requires that interface to talk with the server. The server is broken
down into two major components: the transaction processor realizes the sales
message interface and the accounting driver talks to the accounting system.

In all cases these components are shown as parts of a wider retail system,
hence the leading colons. Multiplicity markers indicate that there are many tills
and servers, but only one queue and accounting system. If you don’t show a
multiplicity, as I haven’t for the internals of the sales server, it’s assumed to be
one. In general I prefer to explicitly show the multiplicity if it’s of any impor-
tance. You can use either the ball-and-socket notation or simple lines for the
connectors. The ball and socket is useful to show an interface, otherwise a simple
line is easier to draw.

140 CHAPTER 14 COMPONENT DIAGRAMS

Figure 14.2 is in the style of a Composite Structure Diagram. Indeed I think
of it as the same as a Composite Structure Diagram, but with a minor adorn-
ment that makes the parts components. You can also draw Component Dia-
grams in the form of class diagrams—usually these focus on the dependencies
between the components. A good way to think of this is that component class
diagrams show the possible connection between components, while the compo-
nent composite structure shows the actual connections between components in
a specific context.

Widget Widget

UML 1 notation UML 2 notation

Figure 14.1 Notation for components

: till [*]

: message
queue [1]

: transaction
processor

: accounting
driver

: accounting
system [1]

sales message

: Sales Server [*]

sales
message

receivables

Figure 14.2 An example component diagram

WHEN TO USE COMPONENT DIAGRAMS 141

As I’ve already said, the issue of what is a component is the subject of endless
debate. One of the more helpful statements I’ve found is this:

Components are not a technology. Technology people seem to find this
hard to understand. Components are about how customers want to relate
to software. They want to be able to buy their software a piece at a time,
and to be able to upgrade it just like they can upgrade their stereo. They
want new pieces to work seamlessly with their old pieces, and to be able
to upgrade on their own schedule, not the manufacturer’s schedule. They
want to be able to mix and match pieces from various manufacturers.
This is a very reasonable requirement. It is just hard to satisfy.

Ralph Johnson, http://www.c2.com/cgi/wiki?DoComponentsExist

The important point is that components represent pieces that are indepen-
dently purchasable and upgradeable. As a result, dividing a system into compo-
nents is as much a marketing decision as it is a technical decision, for which
[Hohmann] is an excellent guide. It’s also a reminder to beware of overly fine-
grained components, because too many components are hard to manage, espe-
cially when versioning rears its ugly head, hence “DLL hell.”

In earlier versions of the UML, components were used to represent physical
structures, such as DLLs. That’s no longer true; for this task, you now use arti-
facts (page 97).

When to Use Component Diagrams

Use component diagrams when you are dividing your system into components
and want to show their interrelationships through interfaces or the breakdown
of components into a lower-level structure.

../../../../../www.c2.com/cgi/wiki@DoComponentsExist

This page intentionally left blank

143

Chapter 15

Collaborations

Unlike the other chapters in this book, this one does not correspond to an offi-
cial diagram in UML 2. The standard discusses collaborations as part of com-
posite structures, but the diagram is really quite different and was used in
UML 1 without any link to composite structures. So I felt it best to discuss col-
laborations as their own chapter.

Let’s consider the notion of an auction. In any auction, we might have a
seller, some buyers, a lot of goods, and some offers for the sale. We can describe
these elements in terms of a class diagram (Figure 15.1) and perhaps some inter-
action diagrams (Figure 15.2).

Figure 15.1 is not quite a regular class diagram. For a start, it’s surrounded
by the dashed ellipse, which represents the auction collaboration. Second, the
so-called classes in the collaboration are not classes but roles that will be real-
ized as the collaboration is applied—hence the fact that their names aren’t capi-
talized. It’s not unusual to see actual interfaces or classes that correspond to the
collaboration roles, but you don’t have to have them.

In the interaction diagram, the participants are labeled slightly differently
from the usual case. In a collaboration, the naming scheme is participant-name /
role-name : class-name. As usual, all these elements are optional.

When you use a collaboration, you can show you’re using one by placing a
collaboration occurrence on a class diagram, as in Figure 15.3, a class dia-
gram of some of the classes in the application. The links from the collabora-
tion to those classes indicate how the classes play the various roles defined in
the collaboration.

The UML suggests that you can use the collaboration occurrence notation to
show the use of patterns, but hardly any patterns author has done this. Erich
Gamma developed a nice alternative notation (Figure 15.4). Elements of the dia-
gram are labeled with either the pattern name or a combination of pattern:role.

144 CHAPTER 15 COLLABORATIONS

1

*

*buyer

seller

offer

lot
11

1

Auction

collaboration role

Figure 15.1 A collaboration with its class diagram of roles

/seller b1/ buyer b2/ buyer

advertise lot

submit offer

submit offer

accept offer

reject offer

Figure 15.2 A sequence diagram for the auction collaboration

COLLABORATIONS 145

*

Party House

Bid

buyer 1 1

*

seller

**

Auction

Offer

lotbuyer, seller

collaboration
occurance

role binding

Figure 15.3 A collaboration occurrence

run(TestResult)

Test

run(TestResult)
runTest()
setUp()
tearDown()

name

TestCase

run(TestResult)

TestSuite

tests

*

Command

Template Method

Pluggable Selector

Composite

Composite: Component

Composite: Leaf

!
non-

normative

Figure 15.4 A nonstandard way of showing pattern use in JUnit (junit.org)

../../../../../junit.org/default.htm

146 CHAPTER 15 COLLABORATIONS

When to Use Collaborations

Collaborations have been around since UML 1, but I admit I’ve hardly used
them, even in my patterns writing. Collaborations do provide a way to group
chunks of interaction behavior when roles are played by different classes. In
practice, however, I’ve not found that they’ve been a compelling diagram type.

147

Chapter 16

Interaction Overview
Diagrams

Interaction overview diagrams are a grafting together of activity diagrams and
sequence diagrams. You can think of interaction overview diagrams either as
activity diagrams in which the activities are replaced by little sequence dia-
grams, or as a sequence diagram broken up with activity diagram notation used
to show control flow. Either way, they make a bit of an odd mixture.

Figure 16.1 shows a simple example of one; the notation is familiar from
what you’ve already seen in the activity diagram and sequence diagram chap-
ters. In this diagram, we want to produce and format an order summary report.
If the customer is external, we get the information from XML; if internal, we
get it from a database. Small sequence diagrams show the two alternatives.
Once we get the data, we format the report; in this case, we don’t show the
sequence diagram but simply reference it with a reference interaction frame.

When to Use Interaction Overview Diagrams

These are new for UML 2, and it’s too early to get much sense of how well they
will work out in practice. I’m not keen on them, as I think that they mix two
styles that don’t really mix that well. Either draw an activity diagram or use a
sequence diagram, depending on what better serves your purpose.

148 CHAPTER 16 INTERACTION OVERVIEW DIAGRAMS

:Customer :XmlParser

load

getName

parse

getOrders

:Order
Summary

new

:Customer :Database

new
:Order

Summary

Format Order Summary Report

[internal data][external data]

ref

sd sd

select from customers and orders

Figure 16.1 Interaction overview diagram

149

Chapter 17

Timing Diagrams

After leaving secondary school, I started out in electronic engineering before I
switched into computing. So I feel a certain anguished familiarity when I see the
UML define timing diagrams as one of its standard diagrams. Timing diagrams
have been around in electronic engineering for a long time and never seemed to
need the UML’s help to define their meaning. But since they are in the UML,
they deserve a brief mention.

Timing diagrams are another form of interaction diagram, where the focus is
on timing constraints: either for a single object or, more usefully, for a bunch of
objects. Let’s take a simple scenario based on the pump and hotplate for a cof-
fee pot. Let’s imagine a rule that says that at least 10 seconds must pass between
the pump coming on and the hotplate coming on. When the water reservoir
becomes empty, the pump switches off, and the hotplate cannot stay on for
more than 15 minutes more.

Figures 17.1 and 17.2 are alternative ways of showing these timing con-
straints. Both diagrams show the same basic information. The main difference
is that Figure 17.1 shows the state changes by moving from one horizontal line
to another, while Figure 17.2 retains the same horizontal position but shows
state changes with a cross. The style of Figure 17.1 works better when there are
just a few states, as in this case, and Figure 17.2 is better when there are many
states to deal with.

The dashed lines that I’ve used on the {>10s} constraints are optional. Use
them if you think they help clarify exactly what events the timing constrains.

150 CHAPTER 17 TIMING DIAGRAMS

When to Use Timing Diagrams

Timing diagrams are useful for showing timing constraints between state
changes on different objects. The diagrams are particularly familiar to hard-
ware engineers.

On

Off

On

Off

{>10s}

{<15m}

waterEmpty

event
state

state
change

timing constraint
object

H
o

tp
la

te
P

u
m

p

Figure 17.1 Timing diagram showing states as lines

event

state
state

change

timing constraint

{>10s}

{<15m}

Off

OnOff Off

On Off

waterEmpty

object

H
o

tp
la

te
P

u
m

p

Figure 17.2 Timing diagram showing states as areas

151

Appendix

Changes between
UML Versions

When the first edition of this book appeared on the shelves, the UML was in
version 1.0. Much of it appeared to have stabilized and was in the process of
OMG recognition. Since then, there have been a number of revisions. In this
appendix, I describe the significant changes that have occurred since 1.0 and
how those changes affect the material in this book.

This appendix summarizes the changes so you can keep up to date if you
have an earlier printing of the book. I have made changes to the book to keep
up with the UML, so if you have a later printing, it describes the situation as it
was as of the print date.

Revisions to the UML

The earliest public release of what came to be the UML was version 0.8 of the
Unified Method, which was released for OOPSLA in October 1995. This was
the work of Booch and Rumbaugh, as Jacobson did not join Rational until
around that time. In 1996, Rational released versions 0.9 and 0.91, which
included Jacobson’s work. After the latter version, they changed the name to
the UML.

Rational and a group of partners submitted version 1.0 of the UML to the
OMG Analysis and Design Task Force in January 1997. Subsequently, the Ratio-
nal partnership and the other submitters combined their work and submitted a
single proposal for the OMG standard in September 1997, for version 1.1 of the
UML. This was adopted by the OMG toward the end of 1997. However, in a fit
of darkest obfuscation, the OMG called this standard version 1.0. So, now the
UML was both OMG version 1.0 and Rational version 1.1, not to be confused
with Rational 1.0. In practice, everyone calls that standard version 1.1.

152 APPENDIX

From then on, there were a number of further developments in the UML.
UML 1.2 appeared in 1998, 1.3 in 1999, 1.4 in 2001, and 1.5 in 2003. Most of
the changes between the 1.x versions were fairly deep in the UML, except for
UML 1.3, which caused some very visible changes, especially to use cases and
activity diagrams.

As the UML 1 series continued, the developers of the UML set their sights on a
major revision to the UML with UML 2. The first RFPs (Request for Proposals)
were issued in 2000, but UML 2 didn’t start to properly stabilize until 2003.

Further developments in the UML will almost certainly occur. The UML
Forum (http://uml-forum.com) is usually a good place to look for more informa-
tion. I also keep some UML information on my site (http://martinfowler.com).

Changes in UML Distilled

As these revisions go on, I’ve been trying to keep up by revising UML Distilled
with subsequent printings. I’ve also taken the opportunity to fix errors and
make clarifications.

The most dynamic period for keeping up with things was during the first edi-
tion of UML Distilled, when we often had to make updates between printings
to keep up with the emerging UML standard. The first through fifth printings
were based on UML 1.0. Any changes to the UML between these printings were
minor. The sixth printing took UML 1.1 into account.

The seventh through tenth printings were based on UML 1.2; the eleventh
printing was the first to use UML 1.3. Printings based on versions of the UML
after 1.0 have the UML version number on the front cover.

The first though sixth printings of the second edition were based on
version 1.3. The seventh printing was the first to take into account the minor
changes of version 1.4.

The third edition was launched to update the book with UML 2 (see
Table A.1). In the rest of this appendix, I summarize the major changes in the
UML from 1.0 to 1.1, from 1.2 to 1.3, and from 1.x to 2.0. I don’t discuss all
the changes that occur but rather only those that change something I said in
UML Distilled or that represent important features that I would have discussed
in UML Distilled.

I am continuing to follow the spirit of UML Distilled: to discuss the key ele-
ments of UML as they affect the application of the UML within real-world
projects. As ever, the selections and advice are my own. If there is any conflict
between what I say and the official UML documents, the UML documents are
the ones to follow. (But do let me know, so I can make corrections.)

../../../../../uml-forum.com/default.htm
../../../../../martinfowler.com/default.htm

APPENDIX 153

I have also taken the opportunity to indicate any important errors and omis-
sions in the earlier printings. Thanks to the readers who have pointed these out
to me.

Changes from UML 1.0 to 1.1

Type and Implementation Class

In the first edition of UML Distilled, I talked about perspectives and how they
altered the way people draw and interpret models—in particular, class dia-
grams. UML now takes this into account by saying that all classes on a class
diagram can be specialized as either types or implementation classes.

An implementation class corresponds to a class in the software environment
in which you are developing. A type is rather more nebulous; it represents a less
implementation-bound abstraction. This could be a CORBA type, a specifica-
tion perspective of a class, or a conceptual perspective. If necessary, you can
add stereotypes to differentiate further.

You can state that for a particular diagram, all classes follow a particular ste-
reotype. This is what you would do when drawing a diagram from a particular
perspective. The implementation perspective would use implementation classes,
whereas the specification and conceptual perspective would use types.

You use the realization relationship to indicate that an implementation class
implements one or more types.

There is a distinction between type and interface. An interface is intended to
directly correspond to a Java or COM-style interface. Interfaces thus have only
operations and no attributes.

You may use only single, static classification with implementation classes,
but you can use multiple and dynamic classification with types. (I assume that

Table A.1 UML Distilled and corresponding UML versions

UML Distilled UML Versions

1st edition UML 1.0–1.3

2nd edition UML 1.3–1.4

3rd edition UML 2.0 onward

154 APPENDIX

this is because the major OO languages follow single, static classification. If one
fine day you use a language that supports multiple or dynamic classification,
that restriction really should not apply.)

Complete and Incomplete Discriminator Constraints

In previous printings of UML Distilled, I said that the {complete} constraint on a
generalization indicated that all instances of the supertype must also be an
instance of a subtype within that partition. UML 1.1 defines instead that {com-
plete} indicates that all subtypes within that partition have been specified,
which is not quite the same thing. I have found some inconsistency on the inter-
pretation of this constraint, so you should be wary of it. If you do want to indi-
cate that all instances of the supertype should be an instance of one of the
subtypes, I suggest using another constraint to avoid confusion. Currently, I am
using {mandatory}.

Composition

In UML 1.0, using composition implied that the link was immutable, or frozen,
at least for single-valued components. That constraint is no longer part of the
definition.

Immutability and Frozen

UML defines the constraint {frozen} to define immutability on association roles.
As it’s currently defined, it doesn’t seem to apply it to attributes or classes. In
my practice, I now use the term frozen instead of immutability, and I’m happy
to apply the constraint to association roles, classes, and attributes.

Returns on Sequence Diagrams

In UML 1.0, a return on a sequence diagram was distinguished by using a stick
arrowhead instead of a solid arrowhead (see previous printings). This was some-
thing of a pain, as the distinction was too subtle and easy to miss. UML 1.1 uses
a dashed arrow for a return, which pleases me, as it makes returns much more
obvious. (As I used dashed returns in Analysis Patterns [Fowler, AP], it also
makes me look influential.) You can name what is returned for later use by using
the form enoughStock := check().

APPENDIX 155

Use of the Term “Role”

In UML 1.0, the term role indicated primarily a direction on an association (see
previous printings). UML 1.1 refers to this usage as an association role. There is
also a collaboration role, which is a role that an instance of a class plays in a
collaboration. UML 1.1 gives a lot more emphasis to collaborations, and it
looks as though this use of “role” may become the primary one.

Changes from UML 1.2 (and 1.1) to 1.3 (and 1.5)

Use Cases

The changes to use cases involve new relationships between use cases. UML 1.1
has two use case relationships: «uses» and «extends», both of which are stereo-
types of generalization. UML 1.3 offers three relationships.

• The «include» construct is a stereotype of dependency. This indicates that
the path of one use case is included in another. Typically, this occurs when
a few use cases share common steps. The included use case can factor out
the common behavior. An example from an ATM might be that Withdraw
Money and Make Transfer both use Validate Customer. This replaces the
common use of «uses».

• Use case generalization indicates that one use case is a variation on
another. Thus, we might have one use case for Withdraw Money—the
base use case—and a separate use case to handle the case when the with-
drawal is refused because of lack of funds. The refusal could be handled as
a use case that specializes the withdrawal use case. (You could also handle
it as simply another scenario within the Withdraw Money use case.) A spe-
cializing use case like this may change any aspect of the base use case.

• The «extend» construct is a stereotype of dependency. This provides a more
controlled form of extension than the generalization relationship. Here,
the base use case declares a number of extension points. The extending use
case can alter behavior only at those extension points. So, if you are buy-
ing a product on line, you might have a use case for buying a product with
extension points for capturing the shipping information and capturing
payment information. That use case could then be extended for a regular
customer for which this information would be obtained in a different way.

156 APPENDIX

There is some confusion about the relationship between the old relationships
and the new ones. Most people used «uses» the way the 1.3 «includes» is used, so
for most people, we can say that «includes» replaces «uses». And most people
used 1.1 «extends» in both the controlled manner of the 1.3 «extends» and as a
general overriding in the style of the 1.3 generalization. So, you can think that
1.1 «extends» has been split into the 1.3 «extend» and generalization.

Now, although this explanation covers most UML usage that I’ve seen, it isn’t
the strictly correct way of using those old relationships. However, most people
didn’t follow the strict usage, and I don’t really want to get into all that here.

Activity Diagrams

When the UML reached version 1.2, there were quite a few open questions
about the semantics of activity diagrams. So, the 1.3 effort involved quite a lot
of tightening up on these semantics.

For conditional behavior, you can now use the diamond-shaped decision
activity for a merge of behavior as well as a branch. Although neither branches
nor merges are necessary to describe conditional behavior, it is increasingly
common style to show them so that you can bracket conditional behavior.

The synchronization bar is now referred to as a fork—when splitting con-
trol—or as a join—when synchronizing control together. However, you can no
longer add arbitrary conditions to joins. Also, you must follow matching rules
to ensure that forks and joins match up. Essentially, this means that each fork
must have a corresponding join that joins the threads started by that fork. You
can nest fork and joins, though, and you can eliminate forks and joins on the
diagram when threads go directly from one fork to another fork, or one join to
another join.

Joins are fired only when all incoming threads complete. However, you can
have a condition on a thread coming out of a fork. If that condition is false,
that thread is considered complete for joining purposes.

The multiple-trigger feature is no longer present. In its place, you can have
dynamic concurrency in an activity, shown with a * inside an activity box. Such
an activity may be invoked several times in parallel; all its invocations must
complete before any outgoing transition can be taken. This is loosely equivalent
to, although less flexible than, a multiple trigger and matching synchronization
condition.

These rules reduce some of flexibility of activity diagrams but do ensure that
activity diagrams are truly special cases of state machines. The relationship

APPENDIX 157

between activity diagrams and state machines was a matter of some debate in
the RTF.

Changes from UML 1.3 to 1.4

The most visible change in UML 1.4 is the addition of profiles, which allows a
group of extensions to be collected together into a coherent set. The UML doc-
umentation includes a couple of example profiles. Together with this, there’s
greater formalism involved in defining a stereotype, and model elements can
now have multiple stereotypes; they were limited to one stereotype in UML 1.3.

Artifacts were added to the UML. An artifact is a physical manifestation of a
component, so, for example, Xerces is a component and all those copies of the
Xerces jar on my disk drive are artifacts that implement the Xerces component.

Prior to 1.3, there was nothing in the UML meta-model to handle Java’s
package visibility. Now there is, and the symbol is “~”.

UML 1.4 also made the stick arrowhead in interaction diagrams mark asyn-
chronous, a rather awkward backward-incompatible change. That caught out a
few people, including me.

Changes from UML 1.4. to 1.5

The principal change here was adding action semantics to the UML, a necessary
step to make UML a programming language. This was done to allow people to
work on this without waiting for the full UML 2.

From UML 1.x to UML 2.0

UML 2 represents the biggest change that’s happened yet to the UML. All sorts
of things have changed with this revision, and many changes have affected
UML Distilled.

Within the UML, there have been deep changes to the UML meta-model.
Although these changes don’t affect the discussion in UML Distilled, they are
very important to some groups.

158 APPENDIX

One of the most obvious changes is the introduction of new diagram types.
Object diagrams and package diagrams were widely drawn before but weren’t
official diagram types; now they are. UML 2 changed the name of collaboration
diagrams to communication diagrams. UML 2 has also introduced new dia-
gram types: interaction overview diagrams, timing diagrams, and composite
structure diagrams.

A lot of changes haven’t touched UML Distilled. I’ve left out discussion of
such constructs as state machine extensions, gates in interactions diagrams, and
power types in class diagrams.

So for this section, I’m discussing only changes that make it into UML Dis-
tilled. These are either changes to things I discussed in previous editions or new
things I’ve started to discuss with this edition. Because the changes are so wide-
spread, I’ve organized them according to the chapters in this book.

Class Diagrams: The Essentials (Chapter 3)

Attributes and unidirectional associations are now primarily simply different
notations for the same underlying concept of property. Discontinuous multi-
plicities, such as [2, 4], have been dropped. The frozen property has been
dropped. I’ve added a list of common dependency keywords, several of which
are new to UML 2. The «parameter», and «local» keywords have been dropped.

Sequence Diagrams (Chapter 4)

The big change here is the interaction frame notation for sequence diagrams to
handle iterative, conditional, and various other controls of behavior. This now
allows you to express algorithms pretty completely in sequence diagrams,
although I’m not convinced that these are any clearer than code. The old iteration
markers and guards on messages have been dropped from sequence diagrams.
The heads of the lifelines are no longer instances; I use the term participant to
refer to them. The collaboration diagrams of UML 1 were renamed to communi-
cation diagrams for UML 2.

Class Diagrams: Concepts (Chapter 5)

Stereotypes are now more tightly defined. As a result, I now refer to words in
guillemets as keywords, only some of which are stereotypes. Instances on object
diagrams are now instance specifications. Classes can now require interfaces as
well as provide them. Multiple classification uses generalization sets to group

APPENDIX 159

generalizations into groups. Components are no longer drawn with their special
symbol. Active objects have double vertical lines instead of thick lines.

State Machine Diagrams (Chapter 10)

UML 1 separated short-lived actions from long-lived activities. UML 2 calls
both activities and uses the term do-activity for the long-lived activities.

Activity Diagrams (Chapter 11)

UML 1 treated activity diagrams as a special case of state diagram. UML 2 broke
that link and as a result removed the rules of matching forks and joins that
UML 1 activity diagrams had to keep to. As a result, they are best understood by
token flow rather than by state transition. A whole bunch of new notation thus
appeared, including time and accept signals, parameters, join specifications, pins,
flow transformations, subdiagram rakes, expansion regions, and flow finals.

A simple but awkward change is that UML 1 treated multiple incoming
flows to an activity as an implicit merge, while UML 2 treats them as an implicit
join. For this reason, I advise using an explicit merge or join when doing activ-
ity diagrams.

Swim lanes can now be multidimensional and are generally called partitions.

This page intentionally left blank

161

Bibliography

[Ambler]

Scott Ambler, Agile Modeling, Wiley, 2002.

[Beck]

Kent Beck, Extreme Programming Explained: Embrace Change, Addison-
Wesley, 2000.

[Beck and Fowler]

Kent Beck and Martin Fowler, Planning Extreme Programming, Addison-
Wesley, 2000.

[Beck and Cunningham]

Kent Beck and Ward Cunningham, “A Laboratory for Teaching Object-Oriented
Thinking,” Proceedings of OOPSLA 89, 24 (10): 1–6. http://c2.com/doc/
oopsla89/paper.html

[Booch, OOAD]

Grady Booch, Object-Oriented Analysis and Design with Applications, Second
Edition. Addison-Wesley, 1994.

[Booch, UML user]

Grady Booch, Jim Rumbaugh, and Ivar Jacobson, UML User Guide, Addison-
Wesley, 1999.

[Coad, OOA]

Peter Coad and Edward Yourdon, Object-Oriented Analysis, Yourdon Press,
1991.

[Coad, OOD]

Peter Coad and Edward Yourdon, Object-Oriented Design, Yourdon Press, 1991.

../../../../../c2.com/doc/oopsla89/paper.html
../../../../../c2.com/doc/oopsla89/paper.html

162 BIBLIOGRAPHY

[Cockburn, agile]

Alistair Cockburn, Agile Software Development, Addison-Wesley, 2001.

[Cockburn, use cases]

Alistair Cockburn, Writing Effective Use Cases, Addison-Wesley, 2001.

[Constantine and Lockwood]

Larry Constantine and Lucy Lockwood, Software for Use, Addison-Wesley,
2000.

[Cook and Daniels]

Steve Cook and John Daniels, Designing Object Systems: Object-Oriented
Modeling with Syntropy, Prentice-Hall, 1994.

[Core J2EE Patterns]

Deepak Alur, John Crupi, and Dan Malks, Core J2EE Patterns, Prentice-Hall,
2001.

[Cunningham]

Ward Cunningham, “EPISODES: A Pattern Language of Competitive Develop-
ment.” In Pattern Languages of Program Design 2, Vlissides, Coplien, and
Kerth, Addison-Wesley, 1996, pp. 371–388.

[Douglass]

Bruce Powel Douglass, Real-Time UML, Addison-Wesley, 1999.

[Fowler, AP]

Martin Fowler, Analysis Patterns: Reusable Object Models, Addison-Wesley,
1997.

[Fowler, new methodology]

Martin Fowler, “The New Methodology,” http://martinfowler.com/articles/
newMethodology.html

[Fowler and Foemmel]

Martin Fowler and Matthew Foemmel, “Continuous Integration,” http://
martinfowler.com/articles/continuousIntegration.html

../../../../../martinfowler.com/articles/newMethodology.html
../../../../../martinfowler.com/articles/newMethodology.html
../../../../../martinfowler.com/articles/continuousIntegration.html
../../../../../martinfowler.com/articles/continuousIntegration.html

BIBLIOGRAPHY 163

[Fowler, P of EAA]

Martin Fowler, Patterns of Enterprise Application Architecture, Addison-
Wesley, 2003.

[Fowler, refactoring]

Martin Fowler, Refactoring: Improving the Design of Existing Programs,
Addison-Wesley, 1999.

[Gang of Four]

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[Highsmith]

Jim Highsmith, Agile Software Development Ecosystems, Addison-Wesley,
2002.

[Hohmann]

Luke Hohmann, Beyond Software Architecture, Addison-Wesley, 2003.

[Jacobson, OOSE]

Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Övergaard,
Object-Oriented Software Engineering: A Use Case Driven Approach, Addison-
Wesley, 1992.

[Jacobson, UP]

Ivar Jacobson, Maria Ericsson, and Agneta Jacobson, The Object Advantage:
Business Process Reengineering with Object Technology, Addison-Wesley, 1995.

[Kerth]

Norm Kerth, Project Retrospectives, Dorset House, 2001

[Kleppe et al.]

Anneke Kleppe, Jos Warmer, and Wim Bast, MDA Explained, Addison-Wesley,
2003.

[Kruchten]

Philippe Kruchten, The Rational Unified Process: An Introduction, Addison-
Wesley, 1999.

164 BIBLIOGRAPHY

[Larman]

Craig Larman, Applying UML and Patterns, 2d ed., Prentice-Hall, 2001.

[Martin]

Robert Cecil Martin, The Principles, Patterns, and Practices of Agile Software
Development, Prentice-Hall, 2003.

[McConnell]

Steve McConnell, Rapid Development: Taming Wild Software Schedules,
Microsoft Press, 1996.

[Mellor and Balcer]

Steve Mellor and Marc Balcer, Executable UML, Addison-Wesley, 2002.

[Meyer]

Bertrand Meyer, Object-Oriented Software Construction. Prentice-Hall, 2000.

[Odell]

James Martin and James J. Odell, Object-Oriented Methods: A Foundation
(UML Edition), Prentice Hall, 1998.

[Pont]

Michael Pont, Patterns for Time-Triggered Embedded Systems, Addison-Wesley,
2001.

[POSA1]

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal, Pattern-Oriented Software Architecture: A System of Patterns,
Wiley, 1996.

[POSA2]

Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann, Pattern-
Oriented Software Archtecture Volume 2: Patterns for Concurrent and Net-
worked Objects, Wiley, 2000.

[Rumbaugh, insights]

James Rumbaugh, OMT Insights, SIGS Books, 1996.

BIBLIOGRAPHY 165

[Rumbaugh, OMT]

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorenzen, Object-Oriented Modeling and Design, Prentice-Hall, 1991.

[Rumbaugh, UML Reference]

James Rumbaugh, Ivar Jacobson, and Grady Booch, The Unified Modeling
Language Reference Manual, Addison-Wesley, 1999.

[Shlaer and Mellor, data]

Sally Shlaer and Stephen J. Mellor, Object-Oriented Systems Analysis: Modeling
the World in Data, Yourdon Press, 1989.

[Shlaer and Mellor, states]

Sally Shlaer and Stephen J. Mellor, Object Lifecycles: Modeling the World in
States. Yourdon Press, 1991.

[Warmer and Kleppe]

Jos Warmer and Anneke Kleppe, The Object Constraint Language: Precise
Modeling with UML, Addison-Wesley, 1998.

[Wirfs-Brock]

Rebecca Wirfs-Brock and Alan McKean, Object Design: Roles Responsibilities
and Collaborations. Addison-Wesley, 2003.

This page intentionally left blank

167

Index
A
Abstract classes, relationship of classes

to interfaces, 69–72
Actions

expansion regions, 126–127
UML version changes, 157

Active classes, 83
Activities, exit, 109
Activity diagrams, 11–12

actions, expansion regions, 126–127
basics, 117–119
decomposing actions, 119–121
edges, 124–125
flow final, 127–128
flows, 124–125

Petri Nets, 130
joins, 118–119

specifications, 128–129
partitions, 120–121, 122
pins, 125
requirement analysis, 29
resources, 130
signals, 121–123
times to use, 129–130
tokens, 124
transformations, 125–126
UML version changes, 156–157,

159
Activity state, 109–110
Actors, 99–100, 143–144
Acyclic Dependency Principle, 91
Aggregation, 67–68
Agile development processes, 24–25

resources, 33
Aliasing, 74
Analysis Patterns, 154
Archetypes, 4

Artifacts, 97–98
UML version changes, 157

Assertions, 50
subclassing, 51

Association classes, 78–80
Associations, class properties, 37–38

bidirectional, 41–43
immutability versus frozen, 154
qualified, 75–76
unidirectional, 41

Associative arrays. See Qualified
associations

Asynchronous messages, 61
Attributes

class properties, 36–37, 39
classes, 66–67
mandatory, 39

Automated regression tests, 22

B
Ball-and-socket notation, 71, 135, 139
Beck, Kent, CRC cards, 63
Bidirectional associations, 41–43
Blueprints, UML as

forward engineering, 2–3, 6
reverse engineering, 3, 6

Booch, Grady, UML history, 7–9
Bound elements, 81–82
Branches, 119
Business use cases, 103

C
CASE (computer-aided software

engineering) tools, 3
UML history, 8

Centralized control of sequence
diagramming, 55–57

168 INDEX

Ceremony, agile processes, 25
Class diagrams, 9, 11–12

abstract classes, 69–72
active classes, 83
aggregation and composition, 67–68
association classes, 78–80
classifications, 75–76

dynamic and multiple, 76–77
comments, 46
constraint rules, 49–50
dependencies, 47–49
design, 30
documentation, 32
generalizations, 45–46, 75–76
keywords, 65–66
messages, 84–85
notes, 46
operations, 43–46
properties (See Class properties)
reference objects, 73–74
requirement analysis, 29
resources, 52
responsibilities, 66
starting with UML, 16
static operations and attributes, 66–67
template (parameterized) classes,

81–82
times to use, 51–52
UML version changes, 158
value objects, 74
versus object diagrams, 88
visibility, 83–84

Class properties. See also Classes
associations, 37–38
associations, bidirectional

associations, 41–43
associations, immutability versus

frozen, 154
associations, qualified, 75–76
attributes, 36–37
basics, 35–38
derived, 68
frozen, 72
generalizations, 45–46
multiplicity, 38–39
program interpretations, 39–41
read-only, 72

Class-Responsibility-Collaboration
(CRC) cards, 62–63

Classes. See Class properties
abstract, 69–72
association, 78–80
attributes, 66–67
Class-Responsibility-Collaboration

(CRC) cards, 62–63
derivation, 81–82
dynamic data types, 153–154
generalizations, 35, 36
implementation, 153–154
presentation, 47
static data types, 153–154
static versus dynamic classifications,

77–78
subclassing, 51
template (parameterized), 81–82

Classifications
data types, 153–154
dynamic and multiple, 76–77
implementation classes, 153–154
versus generalizations, 75–76

Clients/suppliers, 47
Coad, Peter, UML history, 7
Cockburn, Alistair, use cases, 105
Collaboration diagram. See Communica-

tion diagrams
Collaborations

roles, 143–144
sequence diagrams, 144
times to use, 146

Comments in class diagrams, 46
Common Closure and Reuse Principles, 91
Common Object Request Broker Archi-

tecture (CORBA) standards, 1
Communication diagrams, 11–12

basics, 131–133
times to use, 133

Component diagrams, 11–12
basics, 139–141
times to use, 141

Composite structure diagrams, 11–12
basics, 135–136
times to use, 137

Composition, 67–68
changes between UML versions, 154

INDEX 169

Computer-aided software engineering
(CASE) tools, 3

UML history, 8
Conceptual perspectives of UML,

5–6
Concurrent states, 111
Conditionals, 57–61

decisions and merges, 119
Connector, 135
Constraints

complete/incomplete, 154
rules, 49–50

Construction, RUP projects, 26
Continuous integration, 22
Conventional use, 13–14
CORBA (Common Object Request

Broker Architecture), 1
CRC (Class-Responsibility-Collaboration)

cards, 62–63
Crystal, agile development process,

24–25
Cunningham, Ward, CRC cards, 62–63

D
Data tadpoles, 61
Data types, 74

dynamic and multiple classifications,
153–154

implementation classes, 153–154
Decisions, 119
Dependencies, 47–49

keywords, 48–49
packages, 91–93
resources, 52
UML version changes, 155

Deployment diagrams, 11–12
artifacts, 97–98
design, 30
devices, 97–98
execution environments, 97–98
nodes, 97–98
times to use, 98

Derivation of classes, 81–82
Derived properties, class diagrams, 68
Descriptive rules, UML, 13–14
Design, 30–31
Development cases, 25

Development processes
agile, 24–25
DSDM (Dynamic Systems Develop-

ment Method), 24–25
Extreme Programming (XP), 22,

24–25, 33
fitting processes to projects, 26, 28–29
FOD (Feature Driven Development),

24–25
iterative, 19–22
lightweight, 25
Manifesto of Agile Software

Development, 24–25
Rational Unified Process (RUP), 25
resources, 33
selecting, 33
staged delivery, 21
waterfall, 19–22

Devices, 97–98
Diagrams

activity, 11–12
actions, expansion regions, 126–127
basics, 117–119
decomposing actions, 119–121
edges, 124–125
flow final, 127–128
flows, 124–125
flows, Petri Nets, 130
joins, 118–119
joins, specifications, 128–129
partitions, 120–121, 122
pins, 125
requirement analysis, 29
resources, 130
signals, 121–123
times to use, 129–130
tokens, 124
transformations, 125–126
UML version changes, 156–157, 159

basics, 10–12
class, 9, 11–12

abstract classes, 69–72
active classes, 83
aggregation and composition,

67–68
association classes, 78–80
classifications, 75–76

170 INDEX

Diagrams, class, continued
classifications, dynamic and multiple,

76–77
comments, 46
constraint rules, 49–50
dependencies, 47–49
design, 30
documentation, 32
generalizations, 45–46, 75–76
keywords, 48–49, 65–66
messages, 84–85
notes, 46
operations, 43–46
properties (See Class properties)
reference objects, 73–74
requirement analysis, 29
resources, 52
responsibilities, 66
starting with UML, 16
static operations and attributes, 66–67
template (parameterized) classes,

81–82
times to use, 51–52
UML version changes, 158
value objects, 74
versus object diagrams, 88
visibility, 83–84

classifications, 12
communication, 11–12, 131–133
component, 11–12, 139–141
composite structure, 11–12

basics, 135–136
times to use, 137

deployment, 11–12
artifacts, 97–98
design, 30
devices, 97–98
execution environments, 97–98
nodes, 97–98
times to use, 98

interaction
basics, 53–56, 147–148
CRC cards, 62–63
design, 30
loops and conditionals, 57–61
Interaction Overview diagram,

147, 158
participants, 53–57

sequence diagrams, 53–56
synchronous and asynchronous

messages, 61
times to use, 147, 150

interactive overview, 11–12
object, 11–12

times to use, 87–88
package, 11–12

basics, 89–91
design, 30
documentation, 32
resources, 95
times to use, 95
UML version changes, 157

sequence, 11–12
basics, 53–56
centralized and distributed control,

55–57
collaborations, 144
CRC cards, 62–63
interaction diagrams, 53–56
loops and conditionals, 57–61
participants, 53–57
returns, 154
starting with UML, 16
synchronous and asynchronous

messages, 61
times to use, 61–63
UML version changes, 158

shortcomings, 14–16
starting point, 16
state machine, 11–12

activity status, 109–110
basics, 107–109
concurrent states, 111
implementing, 111–114
initial pseudostate, 107
internal activities, 109
requirement analysis, 29
resources, 115
superstates, 110–111
times to use, 114–115
transitions, 107–108, 111
UML version changes, 159

timing, 11–12
basics, 149–150

types, 11
types, UML version changes, 157–158

INDEX 171

use case
basics, 102–103
requirement analysis, 29

viewpoints, 6
Dictionaries. See Qualified associations
Distributed control of sequence

diagramming, 55–57
Do-activities, 110
Documentation, 31–32
Domain objects, 47
DSDM (Dynamic Systems Development

Method), 24–25
Dynamic classifications, 77–78

data types, 153–154

E
Edges, 124–125
Eiffel programming language, 50
Engineering, forward

UML as blueprints, 2–3, 6
UML as programming languages, 3
UML as sketches, 2

Entry activities, 109
Enumerations, 82
Event switches, 111
Evolutionary development process. See

Iterative development process
Executable UML, 4–5
Execution environments, 97–98
Exit activities, 109
Expansion regions, 126–127
Extensions, 100–102
Extreme Programming (XP)

agile development process, 24–25
resources, 33
technical practices, 22

F
Facades, 90–91
Features of use cases, 104
Fish-level use cases, 103–104
Flows, 124–125

flow final, 127–128
Petri Nets, 130

FDD (Feature Driven Development),
24–25

Forks, 117, 119
UML version changes, 156

Forward engineering
UML as blueprints, 2–3, 6
UML as programming languages, 3
UML as sketches, 2

Found messages, 55
Frozen property, 72, 154
Fully qualified names, 89

G
Gang of Four, 27–28
Generalizations, 35, 36

class properties, 45–46
sets, 76–77
UML version changes, 155
versus classifications, 75–76

Getting methods, 45
Graphical modeling languages, 1
Guarantees, 102
Guards, 59

H
Hashes. See Qualified associations
History pseudostate, 111–112

I
Implementation classes, data types,

153–154
Include relationships, 101
Incremental development process. See

Iterative development process
Initial node actions, 117, 119
Initial pseudostate, 107
Instance specifications, 87
Integration, continuous, 22
Interaction diagrams

basics, 53–56, 147–148
CRC cards, 62–63
design, 30
loops and conditionals, 57–61
participants, 53–57
sequence diagrams, 53–56
synchronous and asynchronous

messages, 61
times to use, 147, 150

Interaction frames
loops and conditionals, 58–59
operators, 59

Interactive overview diagrams, 11–12

172 INDEX

Interfaces, 65
relationship to classes, 69–72

Internal activities, entry and exit, 109
Internal activities, exit activities, 109
Invariants, 51
Iteration markers, 59
Iteration retrospective, 28
Iterations, 20

timeboxing, 21–22
Iterative development process, 19–22

J
Jacobson, Ivar

UML history, 7–8
use cases, 105

Jacuzzi development process. See Iterative
development process

Joins, 118–119
specifications, 128–129
UML version changes, 156

K
Keywords, class diagrams, 48–49, 65–66
Kite-level use cases, 103–104

L
Legacy code, 32
Lightweight development processes, 25
Lollipop notation, 71–72, 73
Loomis, Mary, UML history, 8
Loops, 57–61

M
Main success scenario, 100–102
Mandatory attributes, 39
Manifesto of Agile Software

Development, 24–25
Maps. See Qualified associations
Markers, iteration, 59
MDA (Model Driven Architecture), 4
Mellor, Steve

Executable UML, 4
UML history, 7

Merges, 119
Messages, 84–85

asynchronous and synchronous, 61
class diagrams, 84–85

found, 55
pseudomessages, 60

Meta-models
definitions, 9–10
UML version changes, 157

Methods
implementation of actions, 119
versus operations, 45

Meyer, Bertrand, Design by Contract, 50
Model compilers, 4
Modifiers, 44
Multiple classifications, 77–78

data types, 153–154
Multiplicity of properties, 38–39
Multivalued attributes, 39

N
Namespaces, 89
Navigability arrows, 42
Nodes, 97–98
Normative use, 13–14
Notation

ball and socket, 71
definitions, 9–10
Lollipop, 71–72, 73

O
Object diagrams, 11–12

times to use, 87–88
OCL (Object Constraint Language),

49–50
Odell, Jim, UML history, 7–8
OMG (Object Management Group)

control of UML, 1
MDA (Model Driven Architecture), 4
revisions to UML versions, 151–152
UML history, 7–9

OO (object-oriented) programming, 1
paradigm shift, 56

Operations, versus methods, 45
Operators, interaction frames, 59
Optional attributes, 39
P
Package diagrams, 11–12

basics, 89–91
design, 30
documentation, 32

INDEX 173

resources, 95
times to use, 95
UML version changes, 157

Packages
aspects, 93–94
Common Closure and Reuse Principles,

91
definitions, 89
dependencies, 91–93
fully qualified names, 89
implementing, 94–95
namespaces, 89

Part, 135
Participants, sequence diagrams, 53–57
Partitions, activity diagrams, 120–121,

122
Patterns

definition, 27–28
Separated Interface, 94
State, 111–114
using, 145

Petri Nets (flow-oriented techniques),
130

PIM (Platform Independent Model),
4

Pins, 125
Planning, adaptive versus predictive,

23–24
Platform Specific Model (PSM), 4
Port, 135–137
Post-conditions, Design by Contract, 50
Pre-conditions

Design by Contract, 50
use cases, 102

Predictive planning, versus adaptive
planning, 23–24

Prescriptive rules, UML, 13–14
Presentation classes, 47
Private elements, 83
Profiles, 66

UML version changes, 157
Programming languages, UML as, 3, 5

forward engineering, 3
MDA (Model Driven Architecture), 4
reverse engineering, 3
value, 5

Project retrospective, 28–29

Properties of classes
associations, 37–38

bidirectional associations, 41–43
qualified, 75–76

attributes, 36–37
basics, 35–38
derived, 68
frozen, 72
multiplicity, 38–39
program interpretations, 39–41
read-only, 72

Protected elements, 83
Proxy projects, 27
Pseudomessages, 60
PSM (Platform Specific Model), 4
Public elements, 83

Q
Qualified associations, 75–76
Queries, 44

R
Rational Unified Process (RUP)

development cases, 25
phases, 25–26
resources, 33

Read-only property, 72
Rebecca Wirfs-Brock, UML history, 7
Refactoring, 22
Reference objects, 73–74
Relationships

abstract classes to interfaces, 69–72
include, 101–103
temporal, 80
transitive, 48

Releases, 20
Requirement Analysis, 29–30
Requirements churn, 23
Responsibilities of classes, 66
Retrospectives

iteration, 28
project, 28–29

Reusable archetypes, 4
Reverse engineering

UML as blueprints, 3, 6
UML as programming languages, 3
UML as sketches, 2

174 INDEX

Revisions by versions (UML)
from 0.8 through 2.0, general history,

151–152
from 1.0 to 1.1, 153–155

Revisions by versions (UML), continued
from 1.2 to 1.3, 155–157
from 1.3 to 1.4, 157
from 1.4 to 1.5, 157
from 1.x through 2.0, 157–159

Roles. See Actors
Round-trip tools, 3
Rumbaugh, Jim

aggregation, 67
composite structures, 137
UML history, 7–9

RUP (Rational Unified Process)
development cases, 25
phases, 25–26
resources, 33

S
Scenario sets, 99
Scrum, 24–25
Sea-level use cases, 103–104
Searching state, 110
Separated Interface, 94
Sequence diagrams, 11–12

basics, 53–56
centralized and distributed control,

55–57
collaborations, 144
CRC cards, 62–63
interaction diagrams, 53–56
loops and conditionals, 57–61
participants, 53–57
returns, 154
starting with UML, 16
synchronous and asynchronous

messages, 61
times to use, 61–63
UML version changes, 158

Setting methods, 45
Shlaer, Sally, UML history, 7
Signals, 121–123
Single classification, 76–77

implementation classes, 153–154
Single-valued attributes, 39

Sketches, UML as, 6
forward engineering, 2
reverse engineering, 2

Smalltalk, 5
Software development processes. See

Development processes
Software perspectives, UML, 5–6
Spiral development process. See Iterative

development process
Stable Abstractions Principle, 92
Stable Dependencies Principle, 91
Staged delivery development process,

21
Standard use, 13–14
State diagrams. See State machine

diagrams
State machine diagrams, 11–12

activity status, 109–110
basics, 107–109
concurrent states, 111
implementing, 111–114
initial pseudostate, 107
internal activities, 109
requirement analysis, 29
resources, 115
superstates, 110–111
times to use, 114–115
transitions, 107–108, 111
UML version changes, 159

State tables, 111–112, 114
Static classifications

implementation classes, 153–154
versus dynamic classifications,

77–78
Static operations of classes, 66–67
Stereotypes, 66
Stories. See Features of use cases
Subactivities, 119–121
Subclassing, 46

assertions, 51
Substitutability, 45–46
Subtypes, 46
Superstates, 110–111
Suppliers/clients, 47
Swim lanes. See Partitions
Synchronous messages, 61
System use cases, 103

INDEX 175

T
Temporal relationships, 80
Three Amigos, 8
Time signals, 121
Timeboxing, 21–22
Timing diagrams, 11–12

basics, 149–150
Tokens, 124
Transformations, 125–126
Transitions, 26, 107–108, 111

state, 113
Transitive relationships, 48
Trigger, 102
Types. See Data types

U
UML

conventional use, 13–14
definition, 1
descriptive rules, 13–14
fitting into processes, 29–32
history, 7–9
meaning, 14
prescriptive rules, 13–14
resources, 16–17
software and conceptual perspectives,

5–6
standards, legal versus illegal use, 13–14

UML as blueprints
forward engineering, 2–3, 6
reverse engineering, 3, 6

UML as programming language, 3, 5
forward engineering, 3
MDA (Model Driven Architecture), 4
reverse engineering, 3
value, 5

UML as sketches, 6
forward engineering, 2
reverse engineering, 2

UML diagrams. See Diagrams and
specific diagram types

UML Distilled, book editions and corre-
sponding UML versions, 153–155

UML revisions by versions
from 0.8 through 2.0, general history,

151–152
from 1.0 to 1.1, 153–155

from 1.2 to 1.3, 155–157
from 1.3 to 1.4, 157
from 1.4 to 1.5, 157
from 1.x through 2.0, 157–159

Unidirectional associations, 41
Unified Method documentation, 7–8
Unified Modeling Language. See UML
UP (Unified Process). See RUP
Use case diagrams

basics, 102–103
requirement analysis, 29

Use cases
actors, 99–100
business, 103
extensions, 100–102
features, 104
include relationships, 101–103
levels, 103–104
MSS (main success scenario), 100–102
resources, 105
scenario sets, 99
times to use, 104–105
UML version changes, 155–156

User Guide, 115
User stories. See Features of use cases

V
Value objects, 74
Visibility, 83–84

W
Warehousing systems, Platform

Independent Model and Platform
Specific Model, 4

Waterfall development process, 19–22
Well formed UML

definition, 14
legal UML, 13–14

X
XP (Extreme Programming)

agile development process, 24–25
resources, 33
technical practices, 22

Also by Martin Fowler

For more information about these and other titles, please visit www.awprofessional.com

0201895420 0201485672

0201710919 0321127420

../../../../../www.awprofessional.com/default.htm

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

../../../../../informit.com/register
../../../../../informit.com/default.htm
../../../../../informit.com/register

Package Name

Package Diagram

Package

Class 1

Name

dependency
Class 2

Class 3

Activity Diagram

[condition] [else]

merge

branch

fork

join

start

end

p. 121accept
signal

signal
time

flow final

node

artifact 2

Deployment Diagram

artifact 1
«artifact»

p. 89

p. 117

p. 127

p. 97

«concurrent»

Expansion Region p. 127

Repeated
Action

Action

Action Action

Action

subdiagram
with

Action
(Class::method)

	Cover
	Title Page
	Copyright Page
	Contents
	List of Figures
	Foreword to the Third Edition
	Foreword to the First Edition
	Preface
	Why Bother with the UML?
	Structure of the Book
	Changes for the Third Edition
	Acknowledgments

	Chapter 1: Introduction
	What Is the UML?
	Ways of Using the UML
	How We Got to the UML
	Notations and Meta-Models
	UML Diagrams
	What Is Legal UML?
	The Meaning of UML
	UML Is Not Enough
	Where to Start with the UML
	Where to Find Out More

	Chapter 2: Development Process
	Iterative and Waterfall Processes
	Predictive and Adaptive Planning
	Agile Processes
	Rational Unified Process
	Fitting a Process to a Project
	Fitting the UML into a Process
	Requirements Analysis
	Design
	Documentation
	Understanding Legacy Code

	Choosing a Development Process
	Where to Find Out More

	Chapter 3: Class Diagrams: The Essentials
	Properties
	Attributes
	Associations

	Multiplicity
	Programming Interpretation of Properties
	Bidirectional Associations
	Operations
	Generalization
	Notes and Comments
	Dependency
	Constraint Rules
	When to Use Class Diagrams
	Where to Find Out More

	Chapter 4: Sequence Diagrams
	Creating and Deleting Participants
	Loops, Conditionals, and the Like
	Synchronous and Asynchronous Calls
	When to Use Sequence Diagrams

	Chapter 5: Class Diagrams: Advanced Concepts
	Keywords
	Responsibilities
	Static Operations and Attributes
	Aggregation and Composition
	Derived Properties
	Interfaces and Abstract Classes
	Read-Only and Frozen
	Reference Objects and Value Objects
	Qualified Associations
	Classification and Generalization
	Multiple and Dynamic Classification
	Association Class
	Template (Parameterized) Class
	Enumerations
	Active Class
	Visibility
	Messages

	Chapter 6: Object Diagrams
	When to Use Object Diagrams

	Chapter 7: Package Diagrams
	Packages and Dependencies
	Package Aspects
	Implementing Packages
	When to Use Package Diagrams
	Where to Find Out More

	Chapter 8: Deployment Diagrams
	When to Use Deployment Diagrams

	Chapter 9: Use Cases
	Content of a Use Case
	Use Case Diagrams
	Levels of Use Cases
	Use Cases and Features (or Stories)
	When to Use Use Cases
	Where to Find Out More

	Chapter 10: State Machine Diagrams
	Internal Activities
	Activity States
	Superstates
	Concurrent States
	Implementing State Diagrams
	When to Use State Diagrams
	Where to Find Out More

	Chapter 11: Activity Diagrams
	Decomposing an Action
	Partitions
	Signals
	Tokens
	Flows and Edges
	Pins and Transformations
	Expansion Regions
	Flow Final
	Join Specifications
	And There’s More
	When to Use Activity Diagrams
	Where to Find Out More

	Chapter 12: Communication Diagrams
	When to Use Communication Diagrams

	Chapter 13: Composite Structures
	When to Use Composite Structures

	Chapter 14: Component Diagrams
	When to Use Component Diagrams

	Chapter 15: Collaborations
	When to Use Collaborations

	Chapter 16: Interaction Overview Diagrams
	When to Use Interaction Overview Diagrams

	Chapter 17: Timing Diagrams
	When to Use Timing Diagrams

	Appendix: Changes between UML Versions
	Revisions to the UML
	Changes in UML Distilled
	Changes from UML 1.0 to 1.1
	Type and Implementation Class
	Complete and Incomplete Discriminator Constraints
	Composition
	Immutability and Frozen
	Returns on Sequence Diagrams
	Use of the Term “Role”

	Changes from UML 1.2 (and 1.1) to 1.3 (and 1.5)
	Use Cases
	Activity Diagrams

	Changes from UML 1.3 to 1.4
	Changes from UML 1.4. to 1.5
	From UML 1.x to UML 2.0
	Class Diagrams: The Essentials (Chapter 3)
	Sequence Diagrams (Chapter 4)
	Class Diagrams: Concepts (Chapter 5)
	State Machine Diagrams (Chapter 10)
	Activity Diagrams (Chapter 11)

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

